
1. caGrid 2.0 Roadmap . 2
1.1 1 - Invitation to Review the Roadmaps - caGrid 2.0 and Semantic Infrastructure 2.0 . 3
1.2 2 - Introduction to the Roadmaps - caGrid 2.0 and Semantic Infrastructure 2.0 . 4
1.3 3 - Stakeholders - caGrid 2.0 and Semantic Infrastructure 2.0 . 8
1.4 4 - caGrid 2.0 Use Cases . 15

1.4.1 4.1 - Translational Medicine, Research and Personalized Medicine for caGrid 2.0 . 15
1.4.2 4.2 - Life Sciences for caGrid 2.0 . 22
1.4.3 4.3 - Clinical Trials for caGrid 2.0 . 22
1.4.4 4.4 - Electronic Health Records for caGrid 2.0 . 23

1.5 5 - caGrid 2.0 Requirements . 25
1.6 6 - caGrid 2.0 Architecture . 31

1.6.1 6.1 - Overview of caGrid 2.0 Architecture . 31
1.6.2 6.2 - Distributed Ecosystem for caGrid 2.0 . 32
1.6.3 6.3 - Intra-Institutional Use for caGrid 2.0 . 35
1.6.4 6.4 - Platform Architecture for caGrid 2.0 . 37
1.6.5 6.5 - Platform Implementation for caGrid 2.0 . 41
1.6.6 6.6 - CBIIT Adopt or Build Tools Recommendations . 44

1.7 7 - Security for caGrid 2.0 . 45
1.7.1 7.1 - Overview of Security for caGrid 2.0 . 45
1.7.2 7.2 - Communication Security . 47
1.7.3 7.3 - Authentication . 48
1.7.4 7.4 - Authorization . 51
1.7.5 7.5 - Delegation . 53
1.7.6 7.6 - Trust . 55
1.7.7 7.7 - Audit . 56
1.7.8 7.8 - Privacy . 58

1.8 8 - Programming Model . 58
1.9 9 - Tool Categories . 62
1.10 10 - Gap Analysis - caGrid 1.x versus caGrid 2.0 . 64

1.10.1 10.1 - Introduction to Gap Analysis - caGrid 1.x versus caGrid 2.0 . 65
1.10.2 10.2 - Gap Analysis - caGrid 1.x vs. 2.0 Fulfillment of Requirements . 67
1.10.3 10.3 - Next Steps - Risk Mitigation . 68
1.10.4 10.4 - CBIIT Project Recommendations . 70
1.10.5 10.5 - caGrid 1.x Legacy Compatibility . 75
1.10.6 10.6 - Pre-caGrid 2.0 Interim Development . 76

1.11 11 - Governance for caGrid 2.0 . 79
1.11.1 11.1 Introduction to caGrid 2.0 Governance and Management . 79
1.11.2 11.2 - Enterprise Architecture Governance and Design Time Governance for caGrid 2.0 . 81
1.11.3 11.3 - Run-time Policies to be Governed in caGrid 2.0 . 82
1.11.4 11.4 - Support for Multiple Service Maturity Levels . 82

1.12 12 - caGrid 2.0 Roadmap Glossary and References . 83

caGrid 2.0 Roadmap

caGrid 2.0 Roadmap

February 23, 2011 Working Draft

The caGrid 2.0 Roadmap includes the following:

1 - Invitation to Review the Roadmaps - caGrid 2.0 and Semantic Infrastructure 2.0
2 - Introduction to the Roadmaps - caGrid 2.0 and Semantic Infrastructure 2.0
3 - Stakeholders - caGrid 2.0 and Semantic Infrastructure 2.0
4 - caGrid 2.0 Use Cases

4.1 - Translational Medicine, Research and Personalized Medicine for caGrid 2.0
4.2 - Life Sciences for caGrid 2.0
4.3 - Clinical Trials for caGrid 2.0
4.4 - Electronic Health Records for caGrid 2.0

5 - caGrid 2.0 Requirements
6 - caGrid 2.0 Architecture

6.1 - Overview of caGrid 2.0 Architecture
6.2 - Distributed Ecosystem for caGrid 2.0
6.3 - Intra-Institutional Use for caGrid 2.0
6.4 - Platform Architecture for caGrid 2.0
6.5 - Platform Implementation for caGrid 2.0
6.6 - CBIIT Adopt or Build Tools Recommendations

7 - Security for caGrid 2.0
7.1 - Overview of Security for caGrid 2.0
7.2 - Communication Security
7.3 - Authentication
7.4 - Authorization
7.5 - Delegation
7.6 - Trust
7.7 - Audit
7.8 - Privacy

8 - Programming Model
9 - Tool Categories
10 - Gap Analysis - caGrid 1.x versus caGrid 2.0

10.1 - Introduction to Gap Analysis - caGrid 1.x versus caGrid 2.0
10.2 - Gap Analysis - caGrid 1.x vs. 2.0 Fulfillment of Requirements
10.3 - Next Steps - Risk Mitigation
10.4 - CBIIT Project Recommendations
10.5 - caGrid 1.x Legacy Compatibility
10.6 - Pre-caGrid 2.0 Interim Development

11 - Governance for caGrid 2.0
11.1 Introduction to caGrid 2.0 Governance and Management
11.2 - Enterprise Architecture Governance and Design Time Governance for caGrid 2.0
11.3 - Run-time Policies to be Governed in caGrid 2.0
11.4 - Support for Multiple Service Maturity Levels

12 - caGrid 2.0 Roadmap Glossary and References

Refer also to the and to .CBIIT Platform and Semantic Infrastructure Glossary Dependencies Between Semantic Infrastructure 2.0 and caGrid 2.0

https://wiki.nci.nih.gov/x/NxLDAQ
https://wiki.nci.nih.gov/x/wAnDAQ

PST Team Members

Charlie Mead
Platform/Security/Tooling Project Lead
meadch@mail.nih.gov

Robert Shirley
Platform/Security/Tooling Project Sponsor
robert.shirley@nih.gov

Rachana Ananthakrishnan
Larry Brem
Ken Buetow
Braulio Cabral
Raghu Chintalapati
Brian Davis
David Ervin
Elaine Freund
Steve Graham
Dave Hau
Don Jorgensen
Stephen Langella
Ravi Madduri
Brian McIndoe
Scott Oster
Tony Pan
Justin Permar
Frank (Trey) White
Ann Wiley

1 - Invitation to Review the Roadmaps - caGrid 2.0 and Semantic
Infrastructure 2.0

1 - Invitation to Review the Roadmaps - caGrid 2.0 and Semantic Infrastructure 2.0

February 23, 2011 Working Draft

This page invites you to review the roadmap and explains the importance of your review. The team also reports on development to date and plans
for continued development.

Invitation to Review the caGrid 2.0 Roadmap
Planned Development of the caGrid 2.0 Roadmap

Invitation to Review the caGrid 2.0 Roadmap

In order to capitalize on new informatics technologies and changing community needs, we are asking for collaboration in the development of two
roadmaps:

caGrid 2.0 Roadmap
Semantic Infrastructure 2.0 Roadmap

As a core stakeholder in caBIG® tools and technologies, your input is essential in guiding the development of expanded capabilities to support the
rapidly evolving needs of the caBIG® community. Please review this draft and provide your comments on the Community Input form spreadsheet,
available for download for the and the .caGrid 2.0 Roadmap Semantic Infrastructure 2.0 Roadmap

Building on a combination of current caGrid and caBIG® semantic infrastructure technology, advances in technology that have occurred over the
past several years, and lessons learned from our collective experiences with caGrid 1.x and with the current Semantic Infrastructure including
caDSR and EVS, the vision for caGrid 2.0 and Semantic Infrastructure 2.0 is to provide enhanced capabilities in the context of three overarching
requirements:

Lower the current barrier-to-entry to use of the caBIG® tools and technologies
Provide a "linear value proposition" to caBIG® stakeholders – "make easy things easy to do"
Provide support for users of the first-generation caBIG® infrastructure and their data

https://wiki.nci.nih.gov/x/4gTDAQ\], for creating caGrid 2.0, the next generation of caGrid
https://wiki.nci.nih.gov/x/IRnDAQ\], for creating the next generation of caBIG� Semantic Infrastructure
https://wiki.nci.nih.gov/x/4gTDAQ
https://wiki.nci.nih.gov/x/IRnDAQ

Please review this working draft and give us your input regarding the scope for this roadmap, specific capabilities that you see as essential for
success, or suggestions for improvement of the document. The PST project team will review and post the disposition of all content-related input
received for the caGrid 2.0 Roadmap and the Semantic Infrastructure 2.0 project team will do the same for the Semantic Infrastructure 2.0
Roadmap.

Each team will publish ongoing evolutions of the document to reflect substantive content changes as a result of both team and community input.
Each version will be publicly available for comment.

Thank you in advance for your contributions and ongoing engagement as we collaboratively develop the capabilities that will define caGrid 2.0
and the Semantic Infrastructure 2.0. This opportunity to collaborate and share your expertise will ensure that we can deliver the best possible
product to the broad spectrum of users in the caBIG® community.

caGrid 2.0 Roadmap Team

Charlie Mead
Platform/Security/Tooling Project Lead
meadch@mail.nih.gov

Robert Shirley
Platform/Security/Tooling Sponsor
robert.shirley@nih.gov

Semantic Infrastructure 2.0 Roadmap Team

Charlie Mead
Semantic Infrastructure 2.0
Project Lead
charlie.mead@nih.gov

Dave Hau
Semantic Infrastructure 2.0
Project Sponsor
dave.hau@nih.gov

Planned Development of the caGrid 2.0 Roadmap

Teams have been working on developing the caGrid 2.0 and Semantic Infrastructure 2.0 roadmaps for several weeks, and drafts have been
published with requests for input from the community. The teams appreciate the input received and want to report on evolution of development.

Initially, one team was developing a roadmap for caGrid 2.0 and the other a roadmap for the Semantic Infrastructure 2.0. The purpose was
conceived as defining the high-level requirements and prototypical architecture for the next generation of the caBIG® infrastructure.

As the two Roadmap projects have matured, it has become clear that the most effective use of the expertise represented on the two roadmap
project teams is to charge the teams with developing all of the documentation that would normally be produced by a somewhat more robust
software development lifecycle Inception Phase. Thus the project is embarking on the formal start of an extended software engineering process.
This includes high-level requirements, formally-defined scope and vision, and a substantial effort directed at risk identification, profiling, and
reduction and mitigation of risk, including development of prototypes when necessary to more completely understand a given risk or collection of
risks.

Therefore the planned termination date for the two "roadmap" projects is being extended to more closely coincide with the issuing of the Requests
for Proposals and associated Statements of Work. This will enable responders to use the output of the Inception Phase roadmap teams as input
when they plan, and ultimately execute, contracted Elaboration, Construction, and Transition phases for the various caGrid 2.0 and Semantic
Infrastructure 2.0 components described in the Inception Phase documentation.

Specifically, the Inception Phase effort will include continued refinement of the existing roadmap documents, additional requirements gathering
and traceability mapping, risk assessment and mitigation, and scope definition activities with the development of the Request forin parallel
Proposals (RFPs).

2 - Introduction to the Roadmaps - caGrid 2.0 and Semantic
Infrastructure 2.0

2 - Introduction to the Roadmaps - caGrid 2.0 and Semantic Infrastructure 2.0

February 23, 2011 Working Draft

Note on the Scope of the Roadmaps: What they are and what they're not
The two roadmaps should be viewed in the context of the larger software development lifecycle that will produce the
components of caGrid 2.0 infrastructure and Semantic Infrastructure 2.0 infrastructure and tools. The roadmaps are inception

 documents. The primary purpose of the roadmaps is to for the development lifecycle. Thisphase define the Scope and Vision
includes , and In addition, inception phase artifactsidentification of relevant stakeholders "business use cases."high-level
should focus on identifying and whenever possible mitigating, significant project . The two roadmaps are risks not requirements

, artifacts that will be developed following the release of and contracting for one or more Requests for Proposalsdocuments
(RFPs). The scope and trajectory of the RFPs are being informed by the roadmaps. To attempt to make the roadmaps into
detailed requirements documents is to miss the importance of inception phase scope and vision, stakeholder, and risk
documentation – the focus of the caGrid 2.0 and Semantic Infrastructure 2.0 Roadmaps.

This introduction addresses and includes the following:Next-Generation Goals and Objectives for caGrid 2.0 and Semantic Infrastructure 2.0

Overarching Central Requirements
Lower the current barrier-to-entry to use of the caBIG® tools and technologies
Provide a "linear value proposition" to caBIG® stakeholders - "make easy things easy to do"
Provide support for users of the first-generation caBIG® infrastructure and their data

Defining the Scope: "Capability Big Buckets" - Use Cases, Story Boards, High-Level Business Requirements
Security
Discovery (including and distributed queries)ad hoc
Composability

Architecture Paradigm: Semantically-Aware Service-Oriented Architecture (sSOA)
Service-Aware Interoperability Framework (SAIF)

Scalable Performance
Standards-awareness

Additional Information about Use of sSOA and SAIF

Overarching Central Requirements

The caBIG® Next-Generation Grid and Semantic Infrastructure (caGrid 2.0 and Semantic Infrastructure 2.0) are being developed to provide the
necessary technical and semantic infrastructure to support the evolving needs of the caBIG® community – scientists, clinicians, trialists, patients,
and other caBIG® stakeholders.

The caGrid 2.0 and Semantic Infrastructure 2.0 roadmap projects are focused on satisfying three overarching requirements that are central to
success.

Lower the current barrier-to-entry to use of the caBIG® tools and technologies
Provide a "linear value proposition" to caBIG® stakeholders – "make easy things easy to do"
Provide support for users of the first-generation caBIG® infrastructure and their data

The following provides information about these overarching requirements.

Lower the current barrier-to-entry to use of the caBIG® tools and technologies

The goal is for all stakeholders to be able to use the next generation of both caGrid and its closely-associated Semantic Infrastructure more
efficiently and effectively to accomplish the tasks they want and need to accomplish.

Provide a "linear value proposition" to caBIG® stakeholders – "make easy things easy to do"

From an architecture and infrastructure perspective, this requirement is related to – but separate from – lowering the barrier-to-entry. Implicit in
making "easy things easy to do" are several inter-related concepts. For caGrid 2.0 these include:

Support for multiple levels and layers of interoperability and security ("just enough security")
Support for more than one programming model (for example, one that utilizes a SOAP messaging protocol or one that follows a REST
design pattern) for development of, and communication between, caGrid 2.0 services
Support for enhanced workflow definition and execution capabilities including runtime service functional behavior based on designtime
behavioral semantics
Layered, runtime integration of the caGrid 2.0 "tech stack" with the Semantic Infrastructure 2.0 "semantic stack"

Layered integration allows caBIG® stakeholders to deploy and use caBIG® tools and technologies with "just enough security, semantics, and
specifications" to accomplish the desired task in the particular context.

For the Semantic Infrastructure 2.0, the central concepts and requirements include:

Support for multiple levels and layers of semantic robustness ("just enough semantics")
Support for "flexible enhanced relationship management," that is, ability to define at an appropriate level of granularity the semantics of
concept-to-concept relations to allow for computational representation of context
Support for layered semantic representations to facilitate extensible reasoning
Support for queriesad hoc

The combination of (1) the experience gained with the first-generation of caBIG® infrastructure – caGrid 1.x, caDSR, and EVS – and (2) the
substantial advances that have been made in a number of related technologies in the time since the various components of the first-generation of
caBIG® infrastructure, both frames and grounds the feasibility and reality of satisfying these two overarching, central requirements.

Provide support for users of the first-generation caBIG® infrastructure and their data

This third requirement is of equal importance and underscores the evolutionary nature of caGrid 2.0 and the Semantic Infrastructure 2.0. These
are steps from the first-generation of caBIG®, and a wholesale discarding of the past work and experience.not

This requirement can be met in a number of ways ranging from "invisible-to-the-user" infrastructure management via process facades or
semantically-equivalent representations of legacy data, to process migration, data migration, or both from current 1.x to 2.0 implementations.

Defining the Scope: "Capability Big Buckets" - Use Cases, Story Boards, High-Level Business
Requirements

Note
Use of the term "requirements" in this section is meant to be synonymous with "software system functional or non-functionalnot
and quality requirements," as these requirements are of a different type from those documented in the roadmaps. The software
requirements will be found in other artifacts outside the scope of the roadmaps. The "requirements" found in the roadmaps are
statements of coarsely-granulated descriptions of what users need to be able to accomplish--customer requirements rather than

 Detailed functional requirements andsoftware requirements, derived from the use cases, or scenarios of customers' work.
non-functional and quality requirements essential to software architecture will, of course, ultimately be traceable to the
"requirements" in the roadmaps. Their specific statements, however -- such as "the system shall," "the system will," and "the Fit
Metric is," will emerge later in the software development lifecycle. These specific requirements statements will be developed
under contracts awarded following the issuing of Requests for Proposals which were informed by the roadmaps, with respect to
scope, general project trajectory, and risk.

For both the caGrid 2.0 and Semantic Infrastructure 2.0 projects, a number of "capability big buckets" have emerged to address the overarching
requirements.

Each "bucket" is a somewhat loosely defined logical set of requirements which will ultimately be manifest in a number of caGrid 2.0 and Semantic
Infrastructure 2.0 services, or in other software functionality provided by the "tech stack" or the integrated "semantics stack."

The requirements sorted into the various "capability big buckets" have been drawn from enterprise-relevant use cases and storyboards and both
roadmap documents provide traceability to explicitly document this critically important link. Traceability to requirements assures that the
next-generation caBIG® infrastructure will be grounded in the requirements of the caBIG® and Translational Medicine community.

These "buckets" are listed in the sections that follow as an open invitation for discussion across the caBIG® community of their relevance and for
more detailed composition through the community input process for developing the roadmaps:

caGrid 2.0 Roadmap
Semantic Infrastructure 2.0 Roadmap

Through this discussion, these "buckets" may be elaborated, constrained, or if necessary, deleted.

Security

Security capabilities required include the following:

Service-level, as opposed to application-level, security capabilities
Support for federated, policy-compliant, and scalable security capabilities
Integrated security functionality

This encapsulates most of security-based functionality. Thus developers can assume that an "acceptable" level of "base-line"
security can be provided by a given caGrid 2.0 service.
Note that the notion of "acceptable level of base-line security" may itself be developer-defined within the larger construct of the
requirement that caGrid 2.0 provide a "linear value proposition." Service developers will be able to easily define the the level of
security necessary for a given service in a particular deployment context, ideally at both designtime and runtime.

Ease-of-access to various service-level security parameters for manipulation by authorized individuals without underlying technical
knowledge, ideally at both designtime and runtime.

Discovery (including and distributed queries)ad hoc

Discovery refers to locating appropriate designtime and runtime data and metadata. Such information will enable human and
computationally-mediated discovery of caGrid 2.0 resources, including both data and functionality.

Discovery capabilities must be integrated within larger enterprise knowledge management constructs. Many of these constructs are described in
more detail in the Semantic Infrastructure 2.0, such as the knowledge repository and its associated capabilities. Thus the notion of Discovery
includes but is not necessarily limited to data elements, case report forms (CRFs), and service specifications.

It is anticipated that critical aspects of the collective set of discovery and query requirements will be enabled by the adoption and adaptation of a

https://wiki.nci.nih.gov/x/4gTDAQ
https://wiki.nci.nih.gov/x/IRnDAQ

number of Semantic Web technologies including Resource Description Framework (RDF), Web Ontology Language (OWL), and SPARQL Query
Language (SPARQL).

Composability

Both caGrid 2.0 and Semantic Infrastructure 2.0 services will be developed and deployed so as to be available for composition by
non-technologists to support the development of user-defined workflows. Such workflows support scientist, clinical, and other translational
medicine goals.

Note
Service orientation principles are important and should be applied at all levels in the Service Delivery Life Cycle. Of that, there is
no doubt. However, CBIIT is scoping the application of SOA and its associated design principles to "enterprisecurrently
services". The principles will be applied to development of APIs and tools, scoped to the overarching "enterprise services"
context of the CBIIT sSOA (which will, of course, involve a number of service APIs and associated tools).

The notion of "applications as compositions of services focused on accomplishing a particular business requirement" is one of the central
constructs of the overarching semantically-aware Service-Oriented Architecture (sSOA) approach that CBIIT is adopting for caGrid 2.0 and
Semantic Infrastructure 2.0. This approach – outlined in a bit more detail below – is grounded in industry experience that clearly demonstrates
that the Semantically-Aware Service-Oriented Architecture (sSOA) design paradigm effectively supports ongoing interoperability in the context of
the dynamic change and evolution that characterizes the caBIG® community.

Architecture Paradigm: Semantically-Aware Service-Oriented Architecture (sSOA)

Both the Semantic Infrastructure 2.0 and caGrid 2.0 will be developed and deployed within the context of an overarching approach to enterprise
architecture which uses the distributed computing design paradigm commonly referred to as Service-Oriented Architecture (SOA).

In addition the SOA being developed by NCI CBIIT, manifested in the Semantic Infrastructure 2.0 and caGrid 2.0, is referred to as a
"semantically-aware SOA" (sSOA). This addresses the fundamental importance of semantics in any architecture in the broadest possible context
of the life sciences and healthcare.

Note about SOA

It is beyond the scope of this document to discuss in detail the various benefits and goals, central organizing motivations, or
fundamental design principles of SOA. However, the following bullet points summarize each of these topics. Interested readers
can refer to a number of references including two texts by Thomas Erl: and ."Principles of Service Design SOA Design Patterns

The organizing principles of SOA are:

Business-driven
Vendor-neutral
Enterprise-centric
Composition-centric

The benefits and goals of SOA are:

Intrinsic interoperability
Increased federation
Increased business and technology alignment
Increased vendor-diversification options
Increased IT ROI
Decreased IT burden
Increased organizational agility

The SOA design principles are:

Standard Service Contracts
Service Loose Coupling
Service Abstraction
Service Reusability
Service Autonomy
Service Statelessness
Service Discoverability
Service Composability

Service-Aware Interoperability Framework (SAIF)

The Semantic Infrastructure 2.0 is in large part the operational support for the metadata defined in the CBIIT HL7 Service-Aware Interoperability
.Framework Implementation Guide (SAIF IG)

https://wiki.nci.nih.gov/x/fldyAQ
https://wiki.nci.nih.gov/x/fldyAQ

Readers interested in the specifics of the metadata defined by the CBIIT SAIF Implementation Guide should consult that . In particular,document
the chapter on the Enterprise Conformance and Compliance Framework (ECCF) provides a focal point for the definition and representation of the
collective set of informational and behavioral metadata which the Semantic Infrastructure 2.0 will support at both designtime and runtime via the
caGrid 2.0 platform.

Key characteristics of the CBIIT sSOA are described in the following sections.

Scalable Performance

This includes the ability to support high-volume data processing, at the terabyte to petabyte scale.

Standards-awareness

Appropriate informatics and technical standards will be applied to enable broad-based intra-community and inter-enterprise interoperability.

Note that the "application of appropriate standards" ideally should be a decision that can be made based on the "just enough" context-sensitive
criteria mentioned above with respect to "just enough security, semantics, and specifications." Therefore application of standards should be
amenable to adjustment and modulation as the community-of-interest for a given caGrid 2.0 service evolves.

Additional Information about Use of sSOA and SAIF

Visit for additional information.caGrid 2.0 and Semantic Infrastructure 2.0 - Reference Frameworks for Development

3 - Stakeholders - caGrid 2.0 and Semantic Infrastructure 2.0

3 - Stakeholders - caGrid 2.0 and Semantic Infrastructure 2.0

February 23, 2011 Working Draft

This section includes the following:

Development of the Stakeholders List
Definitions for the Stakeholders List
List of Stakeholders
Stakeholder Profiles: Goals, Concerns and Expectations

Executive Decision Makers
Resource Providers
caGrid Developers
Semantic Infrastructure Developers
Semantic Curators
Service Developers
Service Orchestration Developers
High Performance Computing (HPC) Pipeline Creators
Informaticians
Bench Scientists
Collaborators
Patients
Patient Advocates

Development of the Stakeholders List

A federated, semantically aware Service-Oriented Architecture (sSOA) enables development of a continuous and accelerated cycle of scientific
discovery, diagnostics, pharmaceutical product development and improved clinical care. This supports diverse stakeholders, from patients to
providers, researchers to regulators, administrators to advocates, and enables effective collaborations among them.

caGrid 2.0 is an underlying reference IT connectivity platform that implements sSOA. Semantic Infrastructure 2.0 provides the underlying
semantics. caGrid 2.0 and Semantic Infrastructure 2.0 must address the entire range of stakeholders who will be participating in development and
utilization of the CBIIT sSOA implementation.

The caGrid 2.0 and Semantic Infrastructure 2.0 stakeholder list in the sections that follow defines the initial list of stakeholders critical to success.
The stakeholders list is being enhanced during the community review of the caGrid 2.0 and Semantic Infrastructure 2.0 roadmaps, to ensure that
the list includes the full range of community members that will be affected by the roadmaps.

Definitions for the Stakeholders List

This list identifies stakeholder roles based on stakeholder category, groups within each category, and further sub-groups based on distinct roles.

https://wiki.nci.nih.gov/x/fldyAQ
https://wiki.nci.nih.gov/display/CBIITtech/caGrid+2.0+and+Semantic+Infrastructure+2.0+-+Reference+Frameworks+for+Development

Note that individual members of the community may fill multiple roles simultaneously.

Following are definitions of columns in the table:

Stakeholders: This defines the high level role of the stakeholder. The following stakeholder categories have been identified:

Executive Decision Makers: This category consists of stakeholders who are primary decision makers in organizations seeking to promote,
adopt or adapt caGrid 2.0, Semantic Infrastructure 2.0, or both in their organizations.
Resource Providers: This category consists of stakeholders who will be required to commit resources towards building caGrid 2.0,
Semantic Infrastructure 2.0, or both.
caGrid Developers: This category consists of stakeholders who develop the caGrid 2.0 platform under contract from CBIIT.
Semantic Infrastructure Developers: This category consists of stakeholders who develop Semantic Infrastructure tools.
Curators: This category consists of stakeholders who develop and refine metadata.
Solution Developers: This category consists of stakeholders who will directly consume the artifacts developed for caGrid 2.0, Semantic
Infrastructure 2.0, or both to create solutions for end users. Solution Developers is a broad category including, but not limited to, Service
Developers and Application Developers. Groups in this category are listed in the table below. Since caGrid 2.0 is the underlying
information technology (IT) platform, it is likely that these stakeholders will be mainly (though not exclusively) hands-on practical users of
caGrid 2.0 technology.
End Users: This category consists of stakeholders who will consume the artifacts created by the Solution Developers to achieve an end
result in translational medicine. Potential end users include a broad range of specialists such as oncologists, pathologists, informaticians,
citizen researchers, and IT staff responsible for deployment and security.
Collaborators: This category consists of parties who are engaged in similar activity, where collaboration will help caGrid 2.0, Semantic
Infrastructure 2.0, or both in reducing effort, or providing an enhanced solution.
Value Added Providers: This category consists of health care IT vendors and others who will be consuming the open specifications
developed by the caGrid 2.0 team, Semantic Infrastructure 2.0 team, or both teams, and will provide their own interoperable
implementations.
Patients: This category consists of people who receive care.
Patient Advocates: This category consists of people who provide support in some way on behalf of patients.
Regulators: This category consists of stakeholders who create, implement, or both, policy guidelines that impact caGrid 2.0, Semantic
Infrastructure 2.0, or both directly or indirectly.

Groups: This defines different groups of stakeholders within a category of stakeholders, based on their role in the entire health care enterprise.
Refer to the table for the current list of groups.

Sub-Groups: Each group could be further subdivided into smaller sub-groups, that would help determine an appropriate focused and targeted
engagement plan, and ensure that the stakeholder requirements are considered at the tactical level. Refer to the table for the current list of
sub-groups.

List of Stakeholders

Stakeholders Groups Sub-Groups

Executive
Decision Makers

NCI CBIIT Director

Executive
Decision Makers

NCI Other NCI Divisions, Programs or Projects

Executive
Decision Makers

Cancer Center/Community
Center (NCCCP)

Early implementer site, seeking to adopt solution

Executive
Decision Makers

Cancer Center/Community
Center (NCCCP)

Early implementer site, seeking to adapt solution into their environment

Executive
Decision Makers

Cancer Center/Community
Center (NCCCP)

Non-Early Adopter

Executive
Decision Makers

Pharma and BioPharma

Resource
Providers

CBIIT Director

Resource
Providers

Value Added Providers Vendors or sites which implement some or all components of caGrid 2.0 will need to commit
resources

caGrid
Developers

HealthCare IT Vendor(s)

Semantic
Infrastructure
Developers

HealthCare IT Vendor(s)

Semantic
Curators

Metadata, terminology and
forms curators

Solution
Developers

Service Developers CBIIT sSOA developers

Solution
Developers

Service Developers Value Added Providers. Non funded developers (for example, open-source, academic)

Solution
Developers

Service Orchestration
Developers

Solution
Developers

High Performance
Computing Pipeline
Creators

Solution
Developers

Application Developers CBIIT Application developers

Solution
Developers

Application Developers Value Added Providers. Non funded developers (for example, open-source, academic)

Solution
Developers

Service Deployers

Solution
Developers

Application Deployers

Solution
Developers

Portal Developers

Solution
Developers

Service Conformance
Verifiers

Solution
Developers

Application Administrators

Solution
Developers

Site Administrators

Solution
Developers

Site Policy Administrators

Solution
Developers

Analysts Business Process Analysts, Service-oriented Architecture SOA Analysts, Systems Analysts

End Users Clinicians Oncologists

End Users Clinicians Pathologists

End Users Clinicians Radiologists

End Users Clinicians Disease or tumor registry SME

End Users Clinicians Other Oncology related professional groups

End Users Clinical Researchers and
Trialists

End Users Bench Scientists

End Users Informaticians Science PI and Staff

End Users Citizen Researchers

End Users IT Staff Business Analyst, Deployment Staff

End Users System Administrators and
Trainers

Infrastructure Staff

End Users Information Systems
Security Office (ISSO)

Collaborators Standards development
organizations

Health Level Seven (HL7), Clinical Data Interchange Standards Consortium (CDISC),
Biomedical Research Integrated Domain Group (BRIDG), Object Management Group (OMG)

Collaborators Standards development
organizations

Federal standards bodies related to the overall Office of the National Coordinator (ONC)
framework

Collaborators Standards development
organizations

International Standards Organization (ISO) , Digital Imaging and Communications in Medicine
(DICOM), World Wide Web Consortium (W3C), Open Health Tools (OHT), Other

Value Added
Providers

Patients

Patient
Advocates

Regulators Food and Drug
Administration (FDA)

Regulators National Institute of
Standards and Technology
(NIST)

Regulators Office of Management and
Budget (OMB)

Federal Information Security Management Act (FISMA), Capital Planning and Investment
Control (CPIC)

Regulators Office of the National
Coordinator (ONC)

Nationwide Health Information Network (NHIN)

Regulators Privacy Officers Data Sharing Group

Stakeholder Profiles: Goals, Concerns and Expectations

Representative members of several stakeholder categories were asked to list their top concerns and expectations for caGrid 2.0 and Semantic
Infrastructure 2.0.

The team welcomes additional comments from members of each category. Information is added continuously.

Executive Decision Makers

Stakeholder Executive Decision Makers

Stakeholder Goals To align business with IT. To increase organizational agility.

Top Concerns
Cost
Usability
Privacy
Content (value of)
Enterprise Class Maturity
Premature Obsolescence
Correct (sellable) Value Proposition

Top Needs from caGrid 2.0
Ease of adoption
Seamless use of next generation sequence information
Relating and processing diverse datasets (molecular and clinical) in a robust scalable way

Resource Providers

Stakeholder Resource Providers

Stakeholder Goals To maximize ROI.

Top Concerns
Cost
ROI

Top Needs from caGrid2.0
Facilitate more publications, citations

caGrid Developers

Stakeholder caGrid Developers

Stakeholder Goals To develop functional robust infrastructure.

Top Concerns
Flexibility and adaptability to changing needs
Stability of platform
Are there real business use cases?
Lack of adoption
Balancing conflicting goals (for example, scope versus simplicity)

Top Needs from caGrid 2.0
Adoption is high
Business and scientific use case that tips the scale (has significant impact)

Semantic Infrastructure Developers

Stakeholder Semantic Infrastructure Developers

Stakeholder Goals To ...

Top Concerns
One
Two
Three
Four
Five

Top Needs from caGrid 2.0
One
Two

Top Needs from Semantic Infrastructure 2.0
One
Two

Semantic Curators

Stakeholder Semantic Infrastructure Developers

Stakeholder Goals To ...

Top Concerns
One
Two
Three
Four
Five

Top Needs from caGrid 2.0
One
Two

Top Needs from Semantic Infrastructure 2.0
One
Two

Service Developers

Stakeholder Service Developers

Stakeholder Goals To develop services that meet end users functional requirements.

Top Concerns
Familiar development model
Quality factors
Simplicity and ease of use
Specification stability
Stability of basic grid functionality

Top Needs from caGrid 2.0
Focus on business logic

Service Orchestration Developers

Stakeholder Service Orchestration Developer

Stakeholder Goals To create aggregations of services which perform useful workflows.

Top Concerns
Ease of discovery of capabilities and services
Complexity of data transformations
Lack of useful services
Service non-availability

Top Needs from caGrid2.0
Discovery of existing orchestrations
Assurance that orchestration will work at run-time and feedback on why not (at design time)

Orchestration needs to be usable by knowledgeable subject matter expert

High Performance Computing (HPC) Pipeline Creators

Stakeholder HPC Pipeline Creators

Stakeholder Goals To develop and provide computational tools and services that solve computation-intensive tasks.

Top Concerns
Knowledge about appropriateness of a particular tool or approach for a task
Consistency and compatibility of data access across HPC and SOA

Top Needs from caGrid 2.0
Choice to either bring computation to data or data to computation depending upon problem

Informaticians

Stakeholder Category Informaticians

Stakeholder Goals To apply computational techniques to further biomedical research.

Top Concerns
Does this have the functionality I need?
Ease of use
Can I modify it easily to fit my specific needs?

Top Needs from caGrid 2.0
Supply the functionality I need
Easy discovery of the functionality I need
Easily adaptable and configurable

Bench Scientists

Stakeholder Category Bench Scientists

Stakeholder Goals To conduct experiments and capture data for further analysis in support of medical research.

Top Concerns
How does this help me analyze my data?
Ease of use
Handle high throughput data

Top Needs from caGrid 2.0
Let me easily find the data and functionality that I need.

Collaborators

Stakeholder Category Collaborators

Stakeholder Goals To develop standards and techniques in support of scientific research.

Top Concerns
Inability to perform cross-database searches

Top Needs from caGrid 2.0
Support for cross-database searches
Global mapping of resources and available information and data
Validated system for easily mapping among ontologies for informatics
A system to validate user privileges to eliminate the need to independently log in to each database

Patients

Stakeholder
Category

Patients

Stakeholder Goals To understand their condition, options for treatment and possible side effects.

Top Concerns
Is anyone doing a trial in which I might want to participate?
Will the treatment I'm getting work for me?
Often not aware of alternatives in treatments, trials, and so on
What are the adverse events with this treatment?

Top Needs from
caGrid 2.0 Take a patient profile (which would include both health and demographic information) and compare it to

outcomes for other people with similar profiles
Patient access to the lab results or viewer
Compare results and adverse events (AEs) of other people in trial
Allow patients to have access to a calendar of their treatment schedule
Enable patients to enter AEs (for both clinical trials and standard of care)
Allow for at least an aggregate summary of research studies to study participants
Provide consent to have patient contact information made accessible to researchers planning and running trials
for which I might be eligible

Patient Advocates

Stakeholder
Category

Patient Advocates

Stakeholder
Goals

To assist patients in understanding options for treatment, trial participation, potential outcomes and risks

Top Concerns

Top Needs from
caGrid 2.0 Access to Clinical Trials Reporting Program (CTRP), would like to know the stats about trials in their disease

Would like to know how much money is being spent and how successful it's been (provide info on grid)
Consolidate a lot of fragmented information (on trials, treatments, outcomes, AEs) and make it easily available on
the grid
Allowing for patient advocate review and comments throughout the protocol development process would be
important (including any protocol authoring tools being developed)

1.
2.
3.

4.
5.

4 - caGrid 2.0 Use Cases

4 - caGrid 2.0 Use Cases

February 23, 2011 Working Draft

In determining the requirements for caGrid 2.0 it is important that a wide cross section of use cases be assembled and analyzed in depth. These
use cases should provide diverse examples from across the domains supported by caBIG® and should provide examples of cross-domain
interactions where possible.

This page provides a summary of the use cases being analyzed in developing the requirements for caGrid 2.0. This list is not considered
exhaustive and is expected to grow as analysis proceeds.

The following criteria have been applied in selecting use cases for inclusion:

The use case describes a real research or clinical process in the community.
The use case describes the business process instead of the technology process.
The use case demonstrates (at least to some extent) the Translational Medicine paradigm, integrating information from multiple
modalities (genotype and various dimensions of phenotype) from bench to bedside and back.
The use case is prioritized by CBIIT leadership as "strategic" to fulfillment of the mission and goals of NCI CBIIT.
The use cases in the aggregate should touch all key Stakeholder roles.

This section includes the following:

4.1 - Translational Medicine, Research and Personalized Medicine for caGrid 2.0
4.2 - Life Sciences for caGrid 2.0
4.3 - Clinical Trials for caGrid 2.0
4.4 - Electronic Health Records for caGrid 2.0

4.1 - Translational Medicine, Research and Personalized Medicine for caGrid 2.0

4.1 - Translational Medicine, Research and Personalized Medicine for caGrid 2.0

February 23, 2011 Working Draft

The TCGA Enterprise Use Case has been identified as a critical translational research use case based on the criteria listed on the overview page
. This section includes the following:4 - caGrid 2.0 Use Cases

Overview of TCGA Enterprise Use Case
Objectives
Methodology

Clinical and Life Science Research
Clinical Decision Support
Solution Developer Support

TCGA Use Case Document Summary

Overview of TCGA Enterprise Use Case

The TCGA Enterprise Use Case outlines an informatics approach to the study of glioblastoma and care of glioblastoma patients. Glioblastoma is
one of the first cancers targeted by The Cancer Genome Atlas Project (TCGA) for complete molecular, phenotypic, and clinical characterization.

The TCGA Enterprise Use Case describes the biomedical and clinical research workflow to gain insights into the disease, as well as the
application of those insights in personalized medicine. It uses and integrates data from multiple domains ranging from imaging to bioinformatics to
clinical reports, to create a cohesive view of information relevant to clinical decision support and basic biomedical research.

While the use case focuses on glioblastoma, the same infrastructure and processes are generalizable to other cancers targeted by TCGA, as well
as to other diseases. The TCGA Enterprise Use Case, as a canonical and real translational science model, is a key use case for the caGrid 2.0
Roadmap.

The detailed Research and Clinical use cases are listed in the attached document .TCGA Enterprise Use Cases - Research and Clinical

The detailed Solution Developer (Programmer) use cases for the information technology staff who support Researchers in the TCGA Enterprise
Use Cases can be found in the attached document .TCGA Enterprise Use Cases - Solution Developers

https://wiki.nci.nih.gov/download/attachments/32770816/TCGA_Enterprise_Use_Cases_Research_and_Clinical_v07.doc?version=1&modificationDate=1284357088000
https://wiki.nci.nih.gov/download/attachments/32770816/TCGA_Enterprise_Use_Cases_Solution_Developers_draft_v01.doc?version=1&modificationDate=1284357054000

Objectives

The TCGA Enterprise Use Case outlines two primary goals. The first goal involves a cancer translational researcher employing radiology and
pathology imaging, tumor molecular characterization, and clinical outcomes data to better understand mechanisms of tumor spread, interaction of
cancer with tumor microenvironment and mechanisms underlying angiogenesis and tumor necrosis. The second goal involves a clinician using
radiology and pathology data in conjunction with genetic and other molecular data to predict outcome and treatment response.

Additional use cases will be developed to describe the supporting efforts that members of the Solution Development community undertake to
provide end user stakeholders with services and service orchestrations required to complete their activities.

Methodology

Clinical and Life Science Research

The research scenario aims to create a rich body of data, encompassing radiology and pathology imagery, image annotations, subject clinical
data, and genomic, mutation, and expression data and analysis results. This body of data enables data mining and hypothesis formulation and
testing. The scenario is as follows:

(1) Radiology images are acquired at study sites and submitted to the TCGA central repository. Subsequently a radiologist retrieves and
visualizes the image using a visualization software from the TCGA central repository.

(2) The radiologist performs manual or automated analysis, and captures findings and annotations in a standard format. The radiologist submits
the findings and annotations to the annotation data repositories.

(3) A pathologist follows a similar process to capture, retrieve, visualize, analyze, and annotate pathology images from tumor tissue.

(4) A database administrator extracts the clinical data from the electronic health record (EHR), Clinical Data Management System (CDM)S or both
into research data repositories, and a clinical research associate (CRA) extracts the tissue sample captured during a subject encounter from the
Cancer Center biorepository.

(5) A research technician performs assays on the tumor tissue to generate molecular data, including but not limited to genomic, expression,
methylation, and mutation. The research technician stores the data in one or more molecular data repositories.

(6) The research technician retrieves and analyzes the data, and submits the analysis results to the corresponding molecular analysis results
repository.

(7) A computational biologist formulates novel hypotheses.

(8) An informaticst accesses the radiology and pathology imaging, genomic, and clinical data associated with the TCGA Glioblastoma study
through a portal such as the Cancer Molecular Analysis (CMA) portal. The data access requires coordinated data joins across multiple data types
from multiple resources.

(9) The biostatistician analyzes the retrieved data to mine for relationships (that is, annotations, change over time, and changes in response to
intervention). The relationships sought are complex and involves integration of multiple data types.

(10) The biostatistician analyzes the data to build response-to-treatment and cancer-type-to-outcome profiles, and to identify factors that influence
cancer treatment outcomes.

(11) A computational biologist tests the hypotheses using the complete, linked imaging, -omic, and clinical data.

The following diagram provides a graphical overview of the life sciences research use cases. More information on these detailed use cases can
be found in the attached document .TCGA Enterprise Use Cases - Research and Clinical

Figure 4.1.1 Overview of the Life Sciences Research Use Cases

https://wiki.nci.nih.gov/download/attachments/32770816/TCGA_Enterprise_Use_Cases_Research_and_Clinical_v07.doc?version=1&modificationDate=1284357088000

Note
The use case is part of the and a description will be provided afterInception phase activity for further requirements gathering
revision.

Clinical Decision Support

The methodology, resulting data sets, and the infrastructure supporting the research scenario described above extend to support personalized
patient care and clinical research.

https://wiki.nci.nih.gov/x/HCY9Ag

Note
This portion of the use case is undergoing revision and will draw on caBIG® Clinical Information Suite use cases.

(12) A 65-year-old male is diagnosed with a glioblastoma multiforme brain tumor. The radiologist characterizes the tumor based on contrast
enhanced Magnetic Resonance Imaging (MRI) and captures the annotation using an electronic template as part of the workup prior to stereotactic
biopsy.

(13) The pathologist reviews the biopsy and the corresponding digital microscopy images, and captures the pathological findings using a standard
electronic template.

(14) The oncologist receives the MRI, biopsy, and clinical workup data (as the patient's electronic medical record, including -omic data). The
oncologist accesses the Cancer Molecular Analysis (CMA) portal and performs a search based on patient data exported from the hospital's
electronic medical record and the findings from MRI and biopsy. Through the , the oncologist accesses the TCGA database (initiallyCMA Portal
with 500 glioblastoma (GBM) cases), as well as other cooperating systems and research efforts, that contain de-identified glioblastoma tumor
data for patients across the United States. By mining the existing data for matched cohorts, the oncologist can review data concerning treatment
plans and outcomes. The oncologist uses this knowledge to inform a post surgical treatment plan for the patient and inserts it into the patient
record.

(15) The patient's subsequent treatment and outcome data are added to the local, protected data repository. As part of the process, the patient's
data is also de-identified and added to the public data repository to be queried by other oncologists and scientists.

The following diagram provides a graphical overview of the clinical research use cases. More information on these detailed use cases can be
found in the attached document TCGA Enterprise Use Cases - Research and Clinical

Figure 4.1.2 Overview of the Clinical Research Use Cases

https://cma.nci.nih.gov/cma-tcga/
https://wiki.nci.nih.gov/download/attachments/32770816/TCGA_Enterprise_Use_Cases_Research_and_Clinical_v07.doc?version=1&modificationDate=1284357088000

Note
The use case is undergoing revision and a description will be provided.

Solution Developer Support

Several members of the solution developer community are called upon to assist the researchers during the execution of the life sciences and
clinical research use cases. The following diagram shows the major use cases involving solution developers.

These use cases are defined in more detail in the attached document .TCGA Enterprise Use Cases - Solution Developers

Figure 4.1.3 Overview of Research Use Cases Involving Solution Developers

https://wiki.nci.nih.gov/download/attachments/32770816/TCGA_Enterprise_Use_Cases_Solution_Developers_draft_v01.doc?version=1&modificationDate=1284357054000

Note
The use case is undergoing revision and a description will be provided.

TCGA Use Case Document Summary

The TCGA Enterprise Use Cases are documented in the following attached documents.

TCGA Enterprise Use Cases - Research and Clinical

TCGA Enterprise Use Cases - Solution Developers

Note
Accessibility evaluation of the attached documents is in progress. For concerns please contact the .editor

4.2 - Life Sciences for caGrid 2.0

4.2 - Life Sciences for caGrid 2.0

February 23, 2011 Working Draft

The life sciences use case is ."Scenario 8": Overlay of protein array data on the regulatory pathways with links to patient and cell culture

Note
The use case for "Dynamic Extensions" is part of the Inception phase activity for further requirements gathering and work to
date is . The use cases and requirements and their refection in infrastructure architecture will be moved to relevant sectionshere
in the Roadmap documents, when mature.

A clinical research scientist wants to be able to predict the efficacy of tyrosine kinase inhibitors as cancer chemotherapeutic agents.

The fact that many oncogenes are tyrosine kinases would predict that such agents should be effective, but several have been synthesized and
tested in clinical trials, and the results have been disappointing in the extreme, with more cases of tumor growth stimulation than inhibition.

The clinician hypothesizes that these unexpected effects are the result of regulatory feedback loops. To test this hypothesis, the clinician requires
software tools for modeling regulatory pathways. In addition, the clinician needs to determine the state of such pathways in different patients by
measuring the state of phosphorylation of the elements (proteins) of these pathways using reverse phase protein arrays. Because the
consequences of treating the wrong patient with the wrong agent are so severe, the response of the tumor to the inhibitors will be tested in vitro,
on cell cultures established from tumor biopsies.

However, biospecimens and data from those patients who participated in clinical trials of these reagents before their ineffectiveness was
appreciated are also available. Outputs measured on these cultures and biospecimens will include (1) growth rate determined by flow cytometry
or by visually counting cells at different time points, (2) extent of cell death determined similarly, (3) photomicrographs, (4) reports of microscopic
observations by trained investigators, (5) rate of DNA synthesis measured by radioisotope or fluorescent labeled precursor uptake and
incorporation, and (6) staining with various immune reagents followed by high throughput robotic microscopy and automated image analysis.

Source systems for these outputs, as well as data model and applied analytical methods, will differ for different institutions and are also likely to
change over time. The developed solution should be easily customizable and based on light-weight service specifications. These light-weight
specifications will only have minimum requirements for provided functionality and data exposed, making it easy for developers to implement their
own version of services based on institutional needs and available data.

To develop an understanding that will result in giving the correct drugs to the correct patients, data from the protein arrays will be overlaid on the
regulatory pathways and linked to patient and cell culture data.

This use case will be further elaborated and decomposed in a future version of this document.

4.3 - Clinical Trials for caGrid 2.0

4.3 - Clinical Trials for caGrid 2.0

February 23, 2011 Working Draft

NCI CBIIT has developed the caBIG® Clinical Trials Suite which offers a number of tools to support electronic management of clinical trials.
These tools include a Clinical Trials Registry (C3PR), a Patient Study Calendar (PSC), an Adverse Event Reporting System (caAERS), Lab
Viewer and Clinical Connector and iHub. These tools enable integration of the caBIG® Clinical Trials Suite components with Clinical Data
Management Systems and each other.

The following use cases have been identified as needing further analysis within the context of caGrid 2.0:

Register a Subject to a Multi-Site Trial
Report an Adverse Event

https://wiki.nci.nih.gov/download/attachments/32770816/TCGA_Enterprise_Use_Cases_Research_and_Clinical_v07.doc?version=1&modificationDate=1284357088000
https://wiki.nci.nih.gov/download/attachments/32770816/TCGA_Enterprise_Use_Cases_Solution_Developers_draft_v01.doc?version=1&modificationDate=1284357054000
https://wiki.nci.nih.gov/x/Agw9Ag

Determine Subject Eligibility for a Trial

Register a Subject to a Multi-Site Trial

Many trials register subjects from multiple sites. The trial sites can be across multiple institutions within different jurisdictions. One site is
designated as the Study Coordinating Center and is responsible for final approval of subjects registered at individual sites by Site Registrars.

Each site is responsible for maintaining its Subject Registration-related information locally. A Site Registrar can make a request for registration
which will be held in the local service instance. A Study Registrar at a Study Coordination Center can then retrieve the request and process it. All
of the data remains at the local site.

The following diagram shows a high level architecture for the multi-site registration scenario. This use case will be further elaborated and
decomposed in a future version of this document.

Report an Adverse Event

Clinical Trials must report serious adverse events that meet certain criteria specified in the Study Protocol to the Sponsor and regulatory
agencies. In order to complete a Safety Report for an adverse event, the reporting system must aggregate information from multiple sources
including the electronic health record (EHR) system, the Patient Calendar, the Lab system and Clinical Data Management Systems.

This use case will be further elaborated and decomposed in a future version of this document.

Determine Subject Eligibility for a Trial

A clinical trial is designed with a target population in mind. The desired characteristics of the target population are specified during the study
design phase and are referred to as the eligibility criteria for the trial.

Eligibility criteria for a trial are specified in terms of inclusion and exclusion criteria. If a potential subject meets all of the inclusion criteria and has
none of the exclusion criteria then the potential subject is an eligible candidate for enrollment.

Examples of inclusion and exclusion criteria used in eligibility determination follow:

Hemoglobin > 8.5 g/dl
ECOG performance status (PS) 0, 1, or 2
Diabetes patient with A1c in normal range

Eligibility criteria are an example of the application of business rules to a business task.

This use case will be further elaborated and decomposed in a future version of this document.

4.4 - Electronic Health Records for caGrid 2.0

4.4 - Electronic Health Records for caGrid 2.0

February 23, 2011 Working Draft

The TCGA Enterprise Use Case described in section includes4.1 - Translational Medicine, Research and Personalized Medicine for caGrid 2.0
use cases which involve the Electronic Health Record system.

In addition to the TCGA use cases, the following Electronic Health Record use cases are candidates for further analysis as described in this
section:

Clinical Research Filtered Query
Definition
Benefits

Interactions with Other Domains
Listing Patient Allergies and Medications at the Time and Place of Service

Overview of Use Case
Actors
System Actors
Scenario
Concerns

Clinical Research Filtered Query

Definition

A number of stakeholders including Pharmaceutical Companies, Clinical Research Organizations, Patients, and Healthcare Providers provide the

business case for the Clinical Research Filtered Query (CRFQ) service which is defined in two contexts, “Protocol-Selection-Focused” and
“Cohort-Selection-Focused.”

Protocol-Selection-Focused: a service provided by a protocol repository which filters individual protocols based on protocol meta-data
describing the protocol’s Inclusion and Exclusion criteria, against incoming person, animal or other to find one or more protocols inindividual
which the person, animal or other may qualify as a research subject

Cohort-Selection-Focused: a service provided by an EHR repository which filters individual protocol meta-data (inclusion and exclusion criteria)
against patient data to find a suitable potential "cohort" for the protocol. In addition, if one generalizes the latter notion of "finding cohorts based on
defined signal descriptions as inputs," the Clinical Research Filtered Query (CRFQ) service may also be used in the context of "real-time safety
monitoring," that is, the desire to search an EHR repository for a set of patients satisfying a particular "signal definition."

Benefits

By virtue of its ability to efficiently and effectively pair subject- or protocol-based I/E with Protocol- or EHR-based demographic, phenotypic, or
genotypic data or all of these, the CRFQ will enable three benefits to be realized:

Increased efficiency of potential cohort identification
Increased empowerment of patients and providers to identify relevant protocols
Increased efficacy of real-time, post-marketing clinical safety data monitoring

The describes the Clinical Research Filtered Query in more detail. This use case requires further elaboration.CRFQ Product Brief (on hl7.org)

Interactions with Other Domains

An electronic health record must be able to send referral notes and continuation of care documents to other electronic health record systems and
personal health records (PHRs) complying with established standards for interoperability.

In addition, an EHR system must be able to aggregate information from other sources including radiology, pathology, lab results, genomic data,
and PHRs. This use case requires further elaboration.

Listing Patient Allergies and Medications at the Time and Place of Service

This storyboard is excerpted from an .article by Latanya Sweeny published September 8, 2010 in Modern Healthcare

Overview of Use Case

A patient presents in an unconscious state at a California Hospital emergency room. The patient is from Pennsylvania, carrying a Pennsylvania
driver's license. The attending physician wants to look up the patient's Pennsylvania information.

Actors

Patient
Attending Physician

System Actors

Pennsylvania Patient Portal
California EHR System

Scenario

Using information from a Pennsylvania driver's license found on the unconscious patient, the attending physician performs a patient
lookup, using patient name and driver's license number (the article mentions social security number), through the Pennsylvania Patient
Portal.
The Portal confirms that the patient is found in the patient registry and confirms institution-specific identifiers for the patient.
The attending physician requests allergies and medications information for the patient.
The Portal provides the requested patient information, and creates an audit log record for the data access event including the physician
information and the date and time.

Concerns

There are major data privacy concerns with this use case. The potential for inappropriate access to patient records being significant (for
example, celebrity snooping).

Note
The article mentions two more operations: authorized case follow-up and event messaging. Event messaging appears to be the
ability to subscribe to events concerning the patients record.

http://wiki.hl7.org/index.php?title=Product_RR_CRFQ
http://www.modernhealthcare.com/article/20100908/NEWS/309089975/#

5 - caGrid 2.0 Requirements

5 - caGrid 2.0 Requirements

February 23, 2011 Working Draft

This section includes the following:

Requirements Analysis
System Context and Scope
Service Development and Deployment (RQ-DD)

Data Representation and Information Models (RQ-DD-1)
Service Creation (RQ-DD-2)
Service Deployment (RQ-DD-3)

Security (RQ-S)
Data Protection and Privacy (RQ-S-1)
Authentication (RQ-S-2)
Authorization (RQ-S-3)
Trust Management (RQ-S-4)
Auditing (RQ-S-5)
Non-Repudiation (RQ-S-6)

Service Discovery and Utilization (RQ-DU)
Service Semantics (RQ-DU-1)
Service Discovery (RQ-DU-2)
Data Semantics (RQ-DU-3)
Data Discovery and Exploration (RQ-DU-4)
Multiple Service Version Support (RQ-DU-5)
Service Utilization (RQ-DU-6)
Service Interface Mediation (RQ-DU-7)
Service Orchestration and Choreography (RQ-DU-8)

Service Function Support (RQ-FS)
Data Management and Transaction Support (RQ-FS-1)
High-Throughput Data and Computation (RQ-FS-2)
Event Processing and Notifications (RQ-FS-3)
Policy and Rules Management (RQ-FS-4)
Provenance (RQ-FS-5)
External Data Repositories (RQ-FS-6)

Performance and Quality (RQ-PQ)
General Principles (RQ-PQ-G)
Qualitative and Quantitative Characteristics (RQ-PQ-C)

Requirements Analysis

This section presents a high level requirement analysis of use cases in section . The analysis includes tracing of4 - caGrid 2.0 Use Cases
requirements up to use cases and stakeholders. Later sections of the document refer to the requirements listed here when discussing platform,
security, and tooling capabilities.

Note
Use cases are being further developed, along with tracing requirements to use cases and stakeholders. One part of The Cancer
Genome Atlas (TCGA) use case will be treated in depth, for workflow and orchestration.

System Context and Scope

caGrid 2.0 provides foundational specifications and capabilities primarily for four stakeholder categories: Grid Developers, Solutions Developers,
Value Added Providers, and End Users. caGrid 2.0 is envisioned to address requirements in three major areas: Platform, Security, and Tooling.

Platform addresses the infrastructure and certain key capabilities that are common to all services in the NCI Enterprise Service Inventory (NESI)
and service ecosystem. These capabilities, in service and non-service forms, enable creation, composition, and consumption of higher level
functionalities. caGrid 2.0 supports but does not natively provide capability and business services including data analysis, visualization, and
business process management. It is important to note that caGrid 2.0 both informs and leverages the NCI Enterprise Service Inventory and
specifications. The caGrid 2.0 specification allows Value Added Providers in commercial and open source communities to create their own
implementation of the platform, as well as interoperable platform components and capabilities

Security in caGrid 2.0 provides foundational security services via the platform itself, exposing security features through services and capabilities
plugged into the platform.

https://wiki.nci.nih.gov/display/EAWiki/NCI+Enterprise+Services+Inventory+Blueprint

Tooling in caGrid 2.0 is aimed at providing tools, defined as software components that require user interaction, to Grid and Solution Developers
as well as End Users. The Tooling capability is closely tied to the platform and security implementation.

Numerous additional stakeholders contribute to the scope definition, use cases, and requirements described below. These requirements are
grouped at a high level into the following categories: Development and Deployment; Security; Discovery and Utilization; Service Function Support;
and Performance and Quality. This categorization is inexact and the detailed requirements may in fact belong in multiple categories, have broad
impact in the Platform, Security, and Tooling specifications of caGrid 2.0, and be related to other requirements in the same or other categories.

This document focuses on the requirements of caGrid 2.0 rather than those of the services, while recognizing that sometimes it is difficult to
cleanly separate caGrid from caGrid-based services, as in the case of security services. The following sections discuss each of these high level
categories.

Service Development and Deployment (RQ-DD)

Service Development and Deployment include requirements that affect service design, implementation, and configuration.

Data Representation and Information Models (RQ-DD-1)

This set of requirements includes providing an application developer with the ability to define application-specific data elements and attributes (for
example, using ISO 21090 healthcare datatypes) and an information model that defines the relationships between these data elements and
attributes and other data elements and attributes in the broader ecosystem. In particular, the last requirement suggests linked datasets, where
application developers can connect data in disparate repositories as if the repositories are part of a larger federated data ecosystem. Additional
requirements include the ability to publish and discover information models. Support is needed for forms data and common clinical document
standards, such as HL7 Clinical Document Architecture (CDA). To support the use of binary data throughout the system, the binary data must be
typed and semantically annotated.

Link to use case: Pathology, radiology and other data have various data formats which must be described, and the information model for the
patient record must link between these various datatypes. The complete information model includes semantic links between datasets to build a
comprehensive electronic medical record. Annotations on data are defined and included in the information model.

Service Creation (RQ-DD-2)

This is a foundational requirements group to allow a service developer to build services (for example, a service in the NCI Enterprise Service
Inventory) that are used in the use case. This group of requirements allows a Grid or Solution Developer to provide business logic as a service to
the broader enterprise. This group of requirements focuses on specification-driven configuration of policies, security requirements, and metadata
of the service, and a development process that allows service developers to focus on business logic. The service specification may exist a priori
as a CBIIT Enterprise Conformance and Compliance Framework (ECCF) specification, or may be produced as part of the development process.
The former situation allows conformance and compliance testing and certification, while the latter situation is common for research prototypes and
proof of concepts. A minimal user interface for basic interactions with the service may be generated as part of the service creation process. The
minimal user interface (UI) components will be composable in graphical applications, web portals, or both.

Link to use case: Service-based capabilities for image databases, image annotation creation capabilities, search and query, patient electronic
medical record markup, recommended treatment analysis for glioblastoma, and other capabilities in the use case.

Service Deployment (RQ-DD-3)

Service deployment requirements include instance-specific configuration of service policies, business logic configuration, security configuration,
and local or remote (for example, cloud) deployment. The requirements also include configuration of instance-specific service metadata,
advertisement, and publication of a service to the broader ecosystem for discovery and re-use. Application servers, containers, and other
elements should be easily managed by deployment teams and systems administrators.

Link to use case: The services may be located at an institution or hosted externally by service providers.

Security (RQ-S)

Security addresses the requirements of the different components that ensure a trusted and secure environment for data exchange and
processing.

Data Protection and Privacy (RQ-S-1)

Data protection and privacy ensures that data has not been tampered with, and optionally, cannot be seen in transit or accessed by third parties
that are not specifically allowed access to the data as specified in the data access policy.

Link to use case: The confidentiality and integrity of the patient record is assured, allowing only authorized healthcare providers to view the
record during the course of treatment.

Authentication (RQ-S-2)

Authentication covers the capability for a service to identify the client making a service request. Authentication includes not only establishing the
identity of a human user but also the identity of services available in the broader ecosystem. Authentication encompasses both the credential itself

as well as the process of providing a credential to a remote party to establish identity. The credential includes a unique identity in a context (for
example, institution), an extensible set of attributes that describe the user or service, and specification of the credential issuer. Authentication also
includes definition and assignment of a Level of Assurance concerning the authenticity of an identity.

Link to use case: The radiologist, pathologist, and oncologist all have identities, institutional affiliations, and other attributes that need to be
captured in a credential. This credential is submitted to a remote service during the retrieval of radiology and pathology images.

Authorization (RQ-S-3)

Authorization covers both service authorization as well as data access authorization. Service authorization is defined as the capability for a
service client to gain access in order to successfully execute a service operation or sequence of services and operations (for example, in an
orchestration). This includes the capability for a client to determine the authorization policy in order to know in advance that an orchestration is
possible. This also covers the capability to define authorization using the attributes in a credential to support role-based and attribute-based
access control. Data access authorization allows a service to determine whether a requester has adequate privilege to access the data.
Authorization, in addition, also encompasses the delegation of access privileges from one service or user to another service or user.

Link to use case: The data in the clinical and research systems is accessible only to the appropriate parties. This ensures that only authorized
parties are able to retrieve and view magnetic resonance imaging (MRI), biopsy, and clinical workup data.

Trust Management (RQ-S-4)

Trust management is vital in the distributed nature of a service-oriented architecture. Trust management includes the definition of security policy,
assignment of credentials to users and services, and ultimately verifying that credentials are sufficient to enforce security policy. This includes
delegation of trust to third parties.

Link to use case: The separate data systems (pathology, radiology and other data) have an associated policy and are potentially managed by
independent providers. As a result, there is a need to manage trust across providers' data systems in order to ensure that credentials indicate the
identity of the remote party, and to ensure that credentials contain the information required to execute the data access policy, delegating trust
management to third parties.

Auditing (RQ-S-5)

Auditing allows a service administrator to know who accesses the service and when, as well as the output of the invocation. Auditing also allows a
data administrator to know when data was accessed or modified and what data was accessed or modified. Auditing enables complete traceability
of service orchestrations. Auditing requirements include the support for logging and administrative queries, as well as quantitative measurements
of use.

Link to use case: Auditing enables traceability of data access and updates, ensuring that the health care treatment steps taken by the radiologist,
pathologist, and oncologist are viewable by others, providing a complete picture of the patient's treatment.

Non-Repudiation (RQ-S-6)

Non-repudiation generally falls in two categories, the ability to assert that an authentication credential is genuine and the ability to assert the
integrity and origins of data. This is vital to ensuring that datasets used in the translational informatics use case are valid and have not been
tampered with, and that data modifications and access are legitimate.

Link to use case: The pathologist reviews the digital images representing the pathological findings and then submits findings using a standard
template. During submission, the pathologist confirms having personally conducted the review and produced the findings.

Service Discovery and Utilization (RQ-DU)

Service Discovery and Utilization addresses requirements for finding and using services in the service ecosystem, after the services have been
created, deployed, and configured securely.

Service Semantics (RQ-DU-1)

Service semantics may be human or machine consumable. Human semantics include metadata about a service that is meant to be displayed via
a user interface, for example, a description of the operations defined on a service. Computable semantics are metadata that are added to a
service primarily in order to facilitate service orchestration and choreography, and to specify precisely the semantic meaning of data in order to
allow interpretation and reasoning. Services in the ecosystem must have both types of metadata in order to facilitate tools for the platform and
enable working interoperability. Specific metadata attributes to be included will be defined in the Semantic Infrastructure 2.0 effort. caGrid 2.0 will
provide metadata publication and management capabilities for services. Computable service semantics greatly facilitate Service Discovery
(RQ-DU-2)

A separate effort is being undertaken to define and use static and behavioral semantics as part of Semantic Infrastructure 2.0. It is anticipated that
the caGrid 2.0 and Semantic Infrastructure 2.0 will interface to integrate runtime semantics into the platform, providing capabilities such as
semantic query, semantic reasoning, and more.

Link to use case: Image analysis as services will need to adequately describe the actions image analysis performs and the required input and
expected output, so a human or a computer may discover appropriate analysis algorithms to be used on an image.

Service Discovery (RQ-DU-2)

Service discovery allows Grid and Solution Developers as well as End Users to locate a service specification and instances based on attributes in
the service metadata (for example, via a search for specific microarray analysis services).

Link to use case: As institutions share de-identified glioblastoma data sets, the data service can be found by other users. The treatment
recommendation service used by the oncologist is able to discover these new data sets and their corresponding information models, and include
that data for subsequent use in recommendation of treatment.

Data Semantics (RQ-DU-3)

In a diverse information environment, semantics must be used to unambiguously indicate the meaning of data. This requirement is expected to be
addressed by Semantic Infrastructure 2.0, although there will be a touchpoint between caGrid 2.0 and Semantic Infrastructure 2.0 to annotate
data with semantics. Integration with Semantic Infrastructure 2.0 will enable reasoning, semantic query, data mediation (for example, ad hoc data
transformation) and other powerful capabilities. Data Semantic requirements affect the requirements for Data Discovery (RQ-DU-4) and are
strongly related to Data Representation and the Information Model (RQ-DD-1).

Link to use case: The oncologist accesses The Cancer Genome Atlas (TCGA) database to search for de-identified glioblastoma tumor data that
is similar to the patient data exported from the hospital medical record. During this search, the semantics of the data fields are leveraged to
indicate matches between TCGA data fields and the hospital medical record data fields.

Data Discovery and Exploration (RQ-DU-4)

Data Discovery enables End Users to find the types of data available in the ecosystem as well as summary-level information about available data
sets. The wealth of data must be accessible, resulting in the need for exploration of available datasets. This includes the ability to view seamlessly
across independent data sets, allowing an End User to integrate data from multiple sources. In addition, the query capability must support
sophisticated queries such as temporal queries and spatial queries.

Link to use case: The oncologist must be able to quickly find glioblastoma data sets, indicating the fields that the oncologist is interested in
comparing from the clinical data in order to find similar disease conditions and associated treatment plans. Temporal queries allow clinicians to
identify changes in patient condition and treatment over time.

Multiple Service Version Support (RQ-DU-5)

Multiple service versions may be concurrently deployed on a grid. Version differences may include information model changes, behavioral
differences, application programming interface (API) changes, or implementation logic changes. The service metadata will capture the version
change information. Service discovery and invocation must use the version information in the metadata. Service version has impact on workflow
as well as provenance.

Link to use case: Multiple versions of pathology image analysis algorithms may be deployed. The nature and quality of the generated annotation
may vary with the version of the analysis algorithm used.

Service Utilization (RQ-DU-6)

This group of requirements focuses on facilitating a Solution Developer's or an End User's use of existing services. This includes the generation of
client APIs in multiple languages to provide cross-platform access to the target services. caGrid 2.0 will need to support invocation of external
services (from different service eco-systems or federation), and support the necessary cross domain security integration.

Link to use case: All of the data management and access services in the use case are used by application developers to build the user
interfaces that clinicians use during the course of patient care.

Service Interface Mediation (RQ-DU-7)

Services may perform similar functions but provide different interfaces. Services may also provide chainable functions but incompatible data
syntax. The mediation service provides a compatibility layer between two services that are semantically interoperable but syntactically disjointed.
The mediation service will need to leverage static and behavioral semantics of the services and the data in the services. This provides critical
capability to facilitate Service Orchestration and Choreography (RQ-DU-6).

Link to use case: The pathology image repository may contain images in a different format than the image analysis service may consume. The
mediation service can provide shim between the two services.

Service Orchestration and Choreography (RQ-DU-8)

Service orchestration (centrally managed workflow) and choreography (collaborative workflow) allows both application developers and
non-developers to dynamically compose business capabilities from service "building blocks." Special cases include the orchestration of multiple
services for a distributed query, or for a transactional workflow. Service orchestration and choreography will leverage static and behavioral service
semantics from the Semantic Infrastructure 2.0.

Link to use case: Federated query over the TCGA data and other data sets is performed using a service orchestration.

Service Function Support (RQ-FS)

Service function support includes requirements for caGrid 2.0 in the support of a service performing its intended functions. The requirements in
this category primarily target the caGrid 2.0 platform.

Data Management and Transaction Support (RQ-FS-1)

Data management includes linking of disparate data sets and updates of data across the ecosystem. caGrid 2.0 can provide coordinated
management of data access and updates as well as maintenance of data references in the ecosystem, for example, through identifiers. Data
objects will need to be uniquely and permanently identified globally across multiple platform instances on the Grid. Data transmission may follow a
push (for example, HL7 messaging) or pull (for example,query and retrieve) model. The coordinated data management and access necessitates
the support for transactions in the platform. The level of transaction support likely will differ by use case. Approaches to enforcing policies
governing transaction capabilities such as locking and atomic commit will need to be investigated.

Note
Transaction requirements and support need to be investigated further.

Link to use case: The patient has an electronic medical record that spans multiple institutions. The clinical workup data (for example, genomics
and proteomics data) is linked to the clinical care record. Similarly, pathology and radiology findings must be attached to the patient's electronic
medical record.

High-Throughput Data and Computation (RQ-FS-2)

An extremely important data requirement is to store and access emerging large data sets (for example, next-generation sequencing data and high
throughput microscopy imaigng). Next-generation sequencing can generate raw data at 4TB per 2.5 day run. High throughput microscopy imaging
can generate uncompressed RGB color images at up to 50 GB per slide per 30 minute scan. Intermediate and final analysis results can have a
similar size scale. One key requirement in this area is the efficient storage and transport of enormous amounts of data, potentially via streaming
and parallel data access, or by pushing computation to the location of data. As much of this data is binary data, this forms the requirement for a
standards-based approach to binary data transfer.

Another key requirement is the support for high performance data processing, potentially using High Performance Computing (HPC) approaches
such as map-Reduce and filter stream, infrastructure such as teragrid and other parallel and distributed systems, and tools including Hadoop,
Globus, and Data Cutter.

Link to use case: High-resolution digital images must be transferred to other sites during review.

Event Processing and Notifications (RQ-FS-3)

Event Processing and Notifications enables monitoring of services in the ecosystem and provides for asynchronous updates by services,
effectively allowing a loose coordination of services that both provide and respond to conditions (possibly defined in business rules). Monitoring
also facilitates security tasks such as audit and performance logging.

Link to use case: As patient care proceeds, the system notifies the designated clinicians that data (for example, images) are ready for review.
Similarly, when notifications are received, event processing logic allows the appropriate parties to assign clinicians for care. In order to facilitate
better treatment (a learning healthcare system), as new de-identified glioblastoma data is made available, notifications are sent that could indicate
a recommended change in the treatment plan.

Policy and Rules Management (RQ-FS-4)

Policy and Rules Management allow Solution Developers and End Users to create policies and rules and apply them to services. The scope of
policies includes, but is not limited to, definition and configuration of business processing policy and related rules, compliance policies, quality of
service policies, and security policies. Some key functional requirements to manage policies include capabilities to author policies and store
policies, and for approval, validation, and run-time execution of policies.

Link to use case: Each institution has different data sharing needs, access control needs, and business rules for processing that are defined and
customized. For example, policy at the pathologist's institution may state that the patient is to be scheduled for a visit when the review is
complete.

Provenance (RQ-FS-5)

Provenance encompasses the origin and traceability of data throughout an ecosystem. This requirement ensures that all steps of patient care and
research are clearly traceable and repeatable.

Link to use case: The origin of data is tied to the data creator, allowing the oncologist performing the match against TCGA data and other
datasets to include and exclude data sets based on their origin.

External Data Repositories (RQ-FS-6)

There are numerous data repositories on the web today. Important examples include repositories from the National Center for Biotechnology

Information (NCBI) Entrez portal, and the NIH clinical trials registry. These data repositories contain essential information that needs to be
accessible to services in the ecosystem. As a result, caGrid 2.0 must provide capabilities to integrate these external repositories into the Grid with
the assumption that the remote service cannot be changed.

Link to use case: The oncologist searches both TCGA glioblastoma data as well as de-identified data that has been added by care providers
around the country. The additional data sets are external data repositories.

Performance and Quality (RQ-PQ)

These requirements pertain to the runtime characteristics of the services and the platform. The following list of requirements has been adapted
from the caBIG® Clinical Information Suite effort. These are grouped into General Principles and Qualitative and Quantitative Characteristics. As
the requirements are either domain-specific, or implementation-negotiable, they are listed as areas to be considered during implementation of
caGrid 2.0 and caGrid 2.0-based solutions.

General Principles (RQ-PQ-G)

These are a set of high-level and important requirements that must be applied when defining and developing the overall solution. They will set the
domain-specific priorities and guidance, but are not part of either the specifications or implementations of caGrid 2.0.

Total cost of ownership: Includes installation and deployment, hardware procurement, maintenance, training, and other relevant considerations.

Standards compliance: Facilitates industry adoption, adaptation, and interoperability of specification and reference implementation.

Efficiency of use: Includes APIs, logical and simple and minimal hands-on interaction

Flexibility in access: Includes multiple means of access to suit business needs and different user bases

Intuitive and understandable:

Behavior of the system is predictable
Behavior is supported by implementation of the Service-aware Interoperability Framework Behavioral Framework

Reduced learning curve:

Common and repetitive tasks should be easy
Knowledge of "simple" tasks built on to achieve more complex ones
Good documentation

Adaptability and customizability:

Flexible platform to meet multiple needs
Discrete components may be added, removed, or reused

Configurability: Is especially important for security, de-identification, and related concerns

Extensibility: Refers to replacing functionality, adding service capabilities

Maintainability:

Update and upgrade process
Deployment-specific maintenance and system administration

Portable and replaceable components:

Components reusable in other environments
Components can be implemented by third parties

Efficient resource utilization:

Computationally, light-weight
Administratively, low cost

Qualitative and Quantitative Characteristics (RQ-PQ-C)

These are a set of descriptions of facets of the system that are not functional in nature, but which are nevertheless very important. These describe
the desired state of the solution, but are inherently treated as negotiable inputs to a discussion on architecture trade-offs.

Accuracy: Relates to semantic reasoning

Availability and uptime:

Services and capabilities available
Effective communication of scheduled maintenance windows: possibly facilitated by auditing and reporting capabilities

Diagnostics: Refers to monitoring and reporting

Fault-tolerance: Refers to reaction to specific failure conditions such that the End User process is not disrupted and recovery is possible

Maturity: Refers to longevity of components between patch and upgrade cycles

Recovery: Provides for processes interrupted by fault conditions to be restarted once the fault is corrected

Bandwidth:

More generally, throughput
Ability to ship large data sets in reasonable time

Concurrent users:

Number of connections to a system at peak and at average
Effects on overall performance need to be acceptable
Support needed for high throughput processing

Response Time and latency: Provide low latency response - that is, the caGrid 2.0 platform and services should be able to return responses to
requests quickly

Parallel processing:

Load balancing issues
Improved performance for computation-intensive tasks
High-performance computation and data retrieval provided on clusters ranging from small to very large (100K-1000K computing cores).

Scalability: Is the ability to add capacity to a load balanced or distributed system in response to demand.

6 - caGrid 2.0 Architecture

6 - caGrid 2.0 Architecture

February 23, 2011 Working Draft

This section includes the following.

6.1 - Overview of caGrid 2.0 Architecture
6.2 - Distributed Ecosystem for caGrid 2.0
6.3 - Intra-Institutional Use for caGrid 2.0
6.4 - Platform Architecture for caGrid 2.0
6.5 - Platform Implementation for caGrid 2.0
6.6 - CBIIT Adopt or Build Tools Recommendations

6.1 - Overview of caGrid 2.0 Architecture

6.1 - Overview of caGrid 2.0 Architecture

February 23, 2011 Working Draft

The overarching development and deployment architecture for caGrid 2.0 is a Semantically-aware Service-Oriented Architecture (sSOA). The
service is the primary unit of functionality that provides a capability to caGrid 2.0 and caBIG®. Services are "plugged into" the caGrid 2.0 platform
(also referred to as the caGrid 2.0 "technology stack"). The platform is the mechanism by which the service's business (or infrastructure) logic is
made available to the caBIG® community, either for stand-alone use or for inclusion in a service composition which addresses more complex
requirements than can be satisfied by the single service.

In these deployment contexts, the caGrid 2.0 platform provides a collection of standards and published, accessible "platform behavior," including
but not limited to configurable security, support for complex data types, and access to workflow tools. Developers can expect these platform
behaviors "out of the box" when they deploy software components in a caGrid 2.0 context.

In addition, multiple instances of the same service can be deployed within a particular organization's or institution's firewall to provide "local-only"
access to the capabilities provided by the service. Thus it is anticipated that one or more platform deployments will be available at a site, and that
multiple platforms will be deployed across the distributed ecosystem.

A platform deployment is used if an institution provides services or capabilities for consumption by either internal or external consumers. A
platform deployment is also used if an institution builds applications and composite services using service capabilities provided by
platform-resident services, either locally or as separate platform instance. Finally, note that an institution that only wishes to use services available
on one or more platforms (as a client) is not required to deploy the platform itself locally.

Note
In contrast to caGrid 1.x, the intention is for caGrid 2.0 to be fully specified using the the Enterprise Conformance and
Compliance Framework (ECCF), and to promote a scaling level of interoperability which is not coupled to a particular
technology stack. Thus the caGrid 2.0 "platform" described is but one potential platform-specific technology. Other
implementations of caGrid 2.0 services are possible and interoperable. Further, the caGrid 2.0 platform is intended to be highly
service-based, even internally, such that core capabilities can be adopted individually, or on a as-needed basis. caGrid 2.0 will
be comprised of capabilities and services as described in section .6.4 - Platform Architecture for caGrid 2.0

Organizations, institutions, individuals and other service providers and consumers can choose an interoperability paradigm that fits their needs,
which might include using few or many of caGrid 2.0 capabilities. Therefore, the term "on the grid" which previously in caGrid 1.x implied a great
many things, loses meaning in caGrid 2.0. caGrid 2.0 is intended to support a spectrum of adoption of specifications, capabilities and
technologies.

Note on caGrid 2.0 ECCF Specifications
As noted in the NCI CBIIT Service-Aware Interoperability Framework Implementation Guide, the scope of the NCI CBIIT
Enterprise Conformance and Compliance implementation is enterprise services. The service specifications and artifacts
described are for those services deemed enterprise services. It is anticipated that all caGrid 2.0 services provided as part of the
platform security and tooling (PST) distribution will be considered enterprise services, and appropriate artifacts
(Computation-independent Model (CIM), Platform-independent Model (PIM), and Platform-specific Model (PSM)) will be
produced accordingly.

Note on governance of the caGrid 2.0
The governance section describes the notional governance of caGrid 2.0 within NCI CBIIT. However, as the architecture section
demonstrates, there are different "layers" of governance that will apply at the inter-institutional level, intra-institutional level, and
the instance level. An example at the instance level might be a single developer prototyping a service on a personal laptop. It
should be emphasized that policies should be enforced commensurate with their value. That is, the lone developer prototyping
on a laptop should have fairly few policies to adhere to, and the prototype should be easy to deploy using caGrid 2.0
capabilities. It is expected that as the audience increases for services (that is, intra-institutional or inter-institutional deployment)
the policies that must be adhered to will increase. Section discusses these11.4 - Support for Multiple Service Maturity Levels
scenarios further.

6.2 - Distributed Ecosystem for caGrid 2.0

6.2 - Distributed Ecosystem for caGrid 2.0

February 23, 2011 Working Draft

This section describes the overall picture of what caGrid 2.0 might look like, how institutions participating in caGrid 2.0 interact with one another,
and the base infrastructure service capabilities which may be provided by NCI.

Distributed Architecture Diagram
An Example of the Architecture in Use
Mapping of TCGA Use Case to the Distributed Architecture Diagram

Distributed Architecture Diagram

Figure 6.2.1 Distributed Architecture Diagram

The above diagram describes a sampling of how institutions and other consumers of caGrid 2.0 might interact with one another in the proposed
environment. Institutions include NCI, Consuming Organizations, Research Institutions, Cancer Centers, and Clinical Workup Labs. Each may
house several instances of services including Data Services, Certified Services, and Prototype Services.

Some of these services provide business processes and analysis functionality, while others are stores for data. Participating institutions
communicate with one other over the caGrid 2.0 framework to interchange information and make use of services provided by others. Client
applications consume the services caGrid 2.0 provides to give a meaningful interface to researchers, clinicians, and physicians. Central grid
services, such as the basics of the semantic infrastructure, service discovery facilities, and possibly the primary security services for authorization
and authentication may be hosted by one institution and shared by many participants.

Several of the participating institutions may form a virtual organization (VO), which spans institutional boundaries for the purpose of securely
exchanging data and sharing business capabilities and resources. Much of this functionality hinges on the security infrastructure of caGrid 2.0 and
may rely on some common source of trust for the parties involved.

An Example of the Architecture in Use

Section outlines a narrative use case in which a long chain of operations occurs in the process of determining the most4 - caGrid 2.0 Use Cases
appropriate treatment for a patient with a glioblastoma tumor. With this series of processes in mind, the architecture can be applied in the
following way:

A 65 year old male is diagnosed with a glioblastoma multiform brain tumor. The radiologist has characterized the tumor based on contrast
 enhanced Magnetic Resonance Imaging (MRI) and entered that data using an electronic template as part of the workup prior to stereotactic

biopsy.

Three major events happen in the first two sentences of this use case. Chronologically, an MRI is performed and the data captured in some
electronic system. In the distributed ecosystem, this would be one of the individual data services hosted within an institution. Next, a radiologist
reviewing this MRI makes some annotations on it. This process likely involves several individual business processes within the institutional
deployment, as well as data storage to maintain the annotations and link them to the MRI data.

The pathologist has reviewed the biopsy and has obtained digital images representing the pathological findings and has indicated the
 findings on a standard electronic template. The oncologist receives the MRI, biopsy, and clinical workup data (that includes genomic and

proteomic data).

A host of activities occur in this phase, any of which may take place at different institutions participating in caGrid 2.0. If the pathologist works at
an independent laboratory, the biopsy information must be available to that site, regardless of where it was originally captured. The digital images
of the pathological findings could be placed on the laboratory's data storage and dissemination facilities, and the standard electronic template may

be managed by another party, possibly the originating institution where the patient was admitted. Subsequently, the information is reviewed by an
oncologist by pulling all the relevant information from a host of data sources spread across several institutions and labs.

The oncologist accesses the Cancer Molecular Analysis Data Portal and a search is initiated based on patient data exported from the
hospital's electronic medical record and the Annotation Imaging Markup data for the MRI and the biopsy.

The portal which the oncologist accesses is a centrally hosted and managed service and portal, and access to it requires a trust relationship
between the oncologist's institution and the portal to manage authentication between domains. The search this oncologist performs touches
multiple points of data in different data repositories across multiple institutions. The search engine could be implemented as a business process
within the same grid node which presents the portal interface, or housed in a separate node to facilitate high performance when manipulating
large amounts of data, such as is the case with MRI images. An additional and very important source of data is the hospital's electronic medical
records system, where the basic information about the patient and his history to date are kept.

Through the Cancer Molecular Analysis Data Portal, the oncologist accesses the TCGA database, as well as other cooperating systems, that
 contain de-identified glioblastoma tumor data for patients across the country.

Through this portal, the oncologist can locate information about similar patients with similar disease characteristics from repositories around the
country or more widely, which are participating in the grid. This information is de-identified so that research questions like this may be answered
without exposing sensitive information outside of institutional controls. The de-identification process itself may be implemented as a business
process within each institutional grid node and tied in to the platform in such a way that whenever it is requested that data be moved outside of
the node or institution, the de-identification process automatically scrubs out protected information.

The original glioblastoma dataset was from The Cancer Genome Atlas (TCGA) project that had over 500 patients. However data has been
 added via various sources using the same annotation framework. By mining the existing data for matched cohorts, the oncologist can view

data concerning treatment plans and outcomes.

As the quantity of data available to the oncologist expands, the likelihood of a match against an existing similar patient and disease profile
increases. Using sophisticated search capabilities based on tightly integrated semantics and data, the oncologist can quickly identify relevant data
sets out of the myriad available. These data sources have been added to the wider grid using a common annotation framework. Such a
framework could take the form of a centrally managed business process and set of forms, or be pushed to the institutions directly for local
deployment and use.

Mapping of TCGA Use Case to the Distributed Architecture Diagram

The description below maps the TCGA Enterprise Use Case Clinical and Life Science Research scenario to execution in an environment as
illustrated in the Distributed Architecture Diagram.

The Narrative Ids in the table correspond to the Narrative Ids in the TCGA Enterprise Use Case description in section 4 - caGrid 2.0 Use Cases
and to the sub use case ids for TCGA Enterprise Use Case. Please see the sub use cases for more details.

Narrative
Id

An Scenario of Interaction in Distributed ArchitectureExample

1
The images are acquired at a Cancer Center, and submitted to an image repository service deployed at NCI.

2
A radiologist at a Research Institution retrieves the images from NCI and performs visualization and annotation.
The generated Annotations are submitted and stored in an Image Annotation Repository at the Research Institute.

3
The Cancer Center digitizes the tumor tissue pathology slides into images and submits them to a pathology image
repository at the Cancer Center.
A pathologist at a Research Institution retrieves the images from Cancer Center and performs visualization and annotation.
The generated Annotations are submitted and stored in an Image annotation Repository at the Research Center.

4
The tissue is collected at a Cancer Center and submitted to a Clinical Workup Lab.
The patient’s clinical data is collected at a Cancer Center and submitted to a clinical data repository at NCI.

5
The Clinical Workup Lab performs the molecular assays.
The raw data is submitted to the NCI’s molecular data repositories.

6
The Clinical Workup Lab performs initial analysis of the raw data.
The analyzed data is submitted to the molecular analysis results repository at NCI.

7
A Computational Biologist at a Consuming Organization formulates the hypotheses.

8
The Computational Biologist at the Consuming Organization retrieves imaging, annotations, genomic, and clinical data
from respective repositories at NCI, the Research Institute, and the Cancer Center.

9, 9.1
The biostatistician at the Consuming Organization analyzes and visualizes the retrieved imaging, annotation, genomic, and
clinical data.

10
The Computational Biologist at the Consuming Organization validates the hypothesis and submits findings to NCI as part
of publication and funding requirements.

The example scenario illustrates deployment and utilization of services at multiple locations within a distributed environment, coordinated to
accomplish a defined use case scenario. It is important to note that each of these organizations may operate with different governances and
policies including security.

6.3 - Intra-Institutional Use for caGrid 2.0

6.3 - Intra-Institutional Use for caGrid 2.0

February 23, 2011 Working Draft

This section describes how institutions will use the platform to interact with one another and share data and services between internal institutional
divisions. The following are included.

The Institutional View of the Platform
An Example Intra-institutional Workflow

The Institutional View of the Platform

Figure 6.3.1 Institutional Deployment

Note
Description of the diagram will be provided.

The platform architecture provides a system to which new service capabilities can be rapidly added and for which new business processes can be
composed. The platform provides a consistent standard for application programming interfaces (APIs), features, and behavior that services and
applications can expect. The platform also gives institutions an integration point at which various presentation services may be added. Such
services include web based portals and reports and web services which may be consumed by other applications, services, or other instances of
the platform.

An institution may choose to deploy several instances of the platform to suit its needs for separation of sensitive information and research
concerns, or to facilitate scaling as the utilization of any single node increases. When a platform is deployed, it is customized for specific needs.
Each instance of the platform involved in a grid will expose one or more presentation services or interfaces. Knowledge and discovery of these
endpoints is essential for the composition of inter-institutional workflows and federated data retrieval and queries in an ad hoc virtual organization.

Since each instance of the platform can be configured with its own security policy, it is possible to enforce different levels of access in a context
sensitive way. For example, a node which manages sensitive clinical data would be configured with much tighter access controls than one which
only houses and manipulates research data derived from mice.

The architecture design connects the presentation layer to the bus, and the bus in turn communicates with both local "on-the-bus" resources and
external grid resources via bus proxies. Because the bus is leveraged as a communication router and intermediary, the data coming in and out of
those endpoints can be managed, inspected, and dynamically routed to appropriate service providers. Such operations could be driven by the
policy configuration of the particular grid node. Institutions may use this capability for auditing, logging, and data sharing.

An Example Intra-institutional Workflow

Intra-institutional deployment of the caGrid 2.0 platform has significant similarity to the inter-institutional deployment described in section 6.2 -
. The following table describes the identical TCGA (The Cancer Genome Atlas) Enterprise Use Case ClinicalDistributed Ecosystem for caGrid 2.0

and Life Science Research scenario when deployed in a mixed jurisdictional environment within a single institution such as an academic cancer
center. Each jurisdictional domain has different governance and policies including security. The jurisdictional domains in this example include
Hospital, Information Warehouse, Research Laboratory, and Core Services.

The Narrative Ids in the table correspond to the Narrative Ids in the TCGA Enterprise Use Case description in section 4 - caGrid 2.0 Use Cases
and to the sub use case ids for TCGA Enterprise Use Case. Please see the sub use cases for more details.

Narrative
Id

An EXAMPLE Scenario of Interaction in Distributed Architecture

1
The images are acquired at the Hospital, and submitted to an image repository service deployed at the Hospital.

2
A radiologist at a Research Laboratory retrieves the images from a Hospital, creates visualization, and annotates the
images. The generated Annotations are submitted and stored in an Image Annotation Repository at the Research
Laboratory.

3
The tumor tissue is collected at the Hospital and submitted to the Biospecimens Repository Core Service.
The Biologist requests biospecimens from the Biospecimen Respository Core Service and submits tissue to the Pathology
Imaging Core Service.
The Pathology Imaging Core Service digitizes the tumor tissue pathology slides into images and submits them to a
pathology image repository at the Information Warehouse.
A pathologist at a Research Laboratory retrieves the images from the Information Warehouse and performs visualization
and annotation. The generated Annotations are submitted and stored in an Image annotation Repository at the Pathology
Imaging Core Service.

4
The patient’s clinical data is collected from the Hospital EHR system and submitted to a clinical data repository at the
Information Warehouse.

5
The Biologist requests biospecimens from the Biospecimens Respository Core Service and submit tissue to the Genomic
Core Service.
The Genomic Core Service performs the molecular assays. The raw data is submitted to the Genomic Core Service’s
molecular data repositories.

6
The Biologist requests biospecimens from the Genomic Core Service and submits tissue to the Bioinformatics Core
Service.
The Bioinformatics Core Service performs initial analysis of the raw data. The analyzed data is submitted to the molecular
analysis results repository at the Information Warehouse.

7
A Computational Biologist at a Research Laboratory formulates the hypotheses.

8
The Computational Biologist at the Research Laboratory retrieves imaging, annotations, genomic, and clinical data from
respective repositories at the various Core Services, Research Laboratory, Information Warehouse, and Hospital.

9, 9.1
The Biostatistician at the Research Laboratory analyzes the retrieved imaging, annotation, genomic, and clinical data.

10
The Computational Biologist at the Research Laboratory validates the hypothesis and publishes results.

6.4 - Platform Architecture for caGrid 2.0

6.4 - Platform Architecture for caGrid 2.0

February 23, 2011 Working Draft

This section includes the following:

Security Capability Family
Discovery Capability Family

Business Processing Capability Family
Other Capabilities

The primary purpose of the platform is to host and organize services and applications. The platform architecture is centered around a conceptual
bus model, wherein platform "capabilities" are exposed to application and service developers as services on the bus. These services provide
standard interfaces and application programming interfaces (APIs) to the developer, but may vary in their implementation, for example,
consuming from resources on the bus, or proxy to remotely hosted services. Such behavior and other logic of the bus is configured and controlled
via rules, policies, and configuration settings for which the platform provides management interfaces. Developer-created services and applications
are exposed to external consumers via light-weight network/protocol bindings. The bus configuration is used to connect the actual reusable
business logic to these bindings. The developed business logic may also consume from external services or legacy systems via appropriate
adapters connected to the bus.

Figure 6.4.1 Conceptual Diagram of Platform Architecture

Shown above is a conceptual diagram of the platform architecture. For the purposes of illustration, a central bus is depicted, but it is only intended
to represent a collection of patterns and behaviors, not necessarily to imply a specific technology (for example, an Enterprise Service Bus). The
bus's purpose is to isolate various components in the platform, and provide the developer and deployer or both, the means to connect providers
and consumers of business logic and services in a loosely coupled and configurable fashion, via messaging or other means. Also implicit in this
connection is the ability of developer or deployer to add additional logic or behaviors to the connection, such as audit logging and other behaviors.

The diagram depicts a natural platform boundary, shown by the outermost blue rounded rectangle, which separates internal components from
externally-facing components. Those components shown sitting on this boundary, service endpoints, applications, "legacy" and external
interfaces, represent the only conduits between internal processes and external services. That is, external consumers access services and
applications provided by the platform via, respectively, service endpoint adapters and user interface layers. The platform provides connectivity to
external systems via adapters on the bus to legacy systems, and other services hosted outside the platform in the larger ecosystem.

The platform itself provides a number of "out of the box" features, which are modeled conceptually in the diagram as coarse-grain capability
families: security, discovery, business process and non-platform capabilities. Also represented are the policies, rules and configuration settings.

It is important to note that the capabilities installed on the platform may be intrinsic to the platform, plugged-in as software libraries, or integrated
as external services. It is also important to note that a capability provided a platform instance via the outward facing service interfaces may beby
based on a composition of capabilities and business logic the platform instance. For example an authentication capability that a platformin
instance provides as an externally consumable service may be different from the authentication capability installed in the platform to support other
capabilities installed in that platform instance. Each of these capability families is ultimately manifested in the platform as one or more services
(loosely indicated by the small groups of rectangles) connected to the bus. Similarly, the architecture provides the ability to install non-platform
capabilities (such as core or domain services), or uninstall undesired capabilities or services. From the perspective of the platform consumer, the
distinction between "out of the box" services and developer-installed services is merely one of packaging. The platform-provided capability
families are briefly described below.

To illustrate the platform configuration and capabilities, Narrative Id 1 from the intra-institutional platform installation scenario in section 6.3 -
 is examined below.Intra-Institutional Use for caGrid 2.0

"The images are acquired at the hospital, and submitted to an image repository service deployed at the same hospital." In this example, an
instance of the within the jurisdiction and security domain of that hospital and conforming to policies andplatform is installed at a hospital

requirements consistent to their patient care environment.

This deployment of the platform provides an which exposes an for users to "submit images". Theimage repository service external interface
service interface utilizes the installed on the platform and supported by image storage and management business logic database capabilities
installed in the platform. Users performing the image submission should have appropriate role and access rights, enforced by authentication,

 provided in the platform. These capabilities may be potentially integrated with the authorization, and other related capabilities Hospital
.Identity Management system (Legacy System)

The submission process may need to be audited provided by and governed by the on the platform.auditing capabilities auditing policy
Subsequent image retrieval (section Narrative Id 2) by a radiologist in a research lab requires the6.3 - Intra-Institutional Use for caGrid 2.0
hospital platform to interface with an from the Research Lab Platform Installation, and potentiallyexternal authentication service capability
requires installed in the Hospital Platform.de-identification capability

As described above, the functionality of the platform is determined by the capabilities that are installed, and the services each capability provides.
This section describes the . That is, the collection of essential capabilitiessuggested set of functionality that is essential to the platform
combine to manifest the notion of the "Platform" (in contrast to the more general configurable "Bus").

Note
The perspective on which capabilities are essential and which are non-essential will likely evolve as the roadmap evolves.

Candidate Platform Capability Families are:

Security: This family includes key foundational infrastructure including authentication, authorization, auditing, and policy enforcement.
Discovery: This family provides the infrastructure for locating and leveraging resources including services, policies, and semantic
information.
Business processing: This family provides capabilities such as workflow, data transfer, rules engines, and bus routing.
Other capabilities: This family provides higher-level capabilities including semantics (data management and federated query)
capabilities that are anticipated to be commonly used by a broad set of caGrid 2.0 stakeholders.

Security Capability Family

The platform security capability family provides the functions necessary to meet the business needs for security including:

Increased Application Security: Applications can use standard pre-built security services for functions such as authentication, authorization and
auditing. Having these capabilities available on the platform will increase the overall level of application security because individual application
owners will no longer need to create these functions on their own; they will always be consistent and come from a trusted source.

Easier Application Level Security Implementation: Applications can integrate pre-built security services instead of building their own. This will
reduce application development time. Applications only need to implement context-specific security requirements.

Increased Enterprise Assurance Level: By having every application achieve at least the same baseline standard of application level security by
using these capabilities, the overall enterprise assurance level can be increased, and information sharing between entities will be more efficient
using the standard capabilities family for security.

Future Integration and Increased Scalability: Using the SOA design philosophy, these capabilities can be extensible as future requirements
change. The capabilities for security will be realized as loosely coupled services that hide implementation details from applications and thus
security can be adapted to meet emerging needs. Similarly, the decoupled service interfaces can be implemented both as simple "local only"
services, as well as by proxying access to remotely managed services. Thus, they can be scaled to simple local deployments, as well as to
world-wide federations, where load balancing or other distribution concerns can be isolated from the service consumer.

The following capabilities are identified in the platform architecture:

Non-repudiation: Non-repudiation capability allows for protection of the requester and the provider from false denials that data has been sent or
received. Non-repudiation Services provide proof of data origin and delivery. They aim to prevent parties in a communication from falsely denying
having taken part in that communication; for example, a non-repudiation service for digitally certified mail ensures that the sender cannot deny
having sent the message and the receiver cannot deny having received it.

Trust Management: Trust Management addresses trusted relationships between entities, such as organizations, enterprises, identities, security
domains, and systems. These relationships can be system-to-system, business-to-business, and others.

Authentication: These capabilities can support multiple authentication mechanisms, such as username/password, hardware token-based, or
biometric-based. They can also support protocols, such as Kerberos. In many cases multiple authentication mechanisms will be combined as
multifactor authentication.

Authentication capabilities also provide support for identity tokens and security tokens carried in messages, for example, web services messages.

Authorization: Authorization follows authentication. That is, once a user or system has been authenticated, it is then possible to perform
authorization. Authorization means making a decision about whether an authenticated or even an unauthenticated identity is allowed to access a
resource. An authorization decision depends on two key inputs: (1) An authorization policy that describes the required security attributes of a user
or system that will allow them access to a resource, and (2) An authenticated user or system and their list of security attributes.

To make an authorization decision, policies need to be in place. These policies are enforced by a Policy Enforcement Point (PEP) that relies on

the decision made by a Policy Decision Point (PDP). PDPs may also rely on a Policy Administration Point, which allows for the creation,
modification and retrieval of policies via a central service. An example of a PEP is the enterprise service bus, which allows access to services
based on the authorization decisions received from the relevant PDP.

Audit: Audit capability includes maintaining detailed, secure logs of critical activities in a business environment. These critical activities can be
related to security, content management, business transactions, and so on. Examples of security-related critical activities that can be audited are:
login failures or successes, unauthorized or authorized access to protected resources, modification of security policy, non-compliance with a
specified security policy, health of security servers, and so on. An audit logging service provides mechanisms to submit, collect, persistently store,
and report on audit data submitted as events. Which events are audited and stored is defined by configurable policy. These policies need to
define which events are important, how long to keep the data, and whether to keep the audit data in a tamper resistant form. Audit data must be
collected for all of the security services.

Data Protection: Data protection includes capabilities such as detecting unauthorized modification of data due to errors or malicious attacks.
Organizations must allow for the use of data by authorized users and applications, as well as the transmission of data for remote processing. Data
integrity facilities can indicate whether information has been altered. Data protection capabilities commonly rely on cryptographic techniques, such
as message integrity codes, message authentication codes, and digital signatures.

Assertion: The platform provides the capability to generate verifiable assertions, as well as consume and validate externally produced assertions.
Such assertions generally encapsulate some core data, and provide a security technology (such as digital signatures) to ensure the data has not
been tampered with and verify the identity of its source. This capability has a dependency on the trust management capabilities.

Privacy: The platform will provide capabilities related to privacy, intellectual property and data sharing concerns including but not limited to
informed consent and computable data sharing agreements.

Discovery Capability Family

The platform discovery capability family provides the infrastructure to identify, locate, and leverage local and remote resources within a service or
application, deployed on the platform. Similarly, it provides the infrastructure to make platform-deployed services available to other discovery
consumers. Capabilities in this family include support for discovering services, datasets, policies, and rules. Via interaction with the Semantic
Infrastructure 2.0, access will be provided to semantics for semantic-based discovery. As noted in the caGrid 2.0 requirements section, data query
is a caGrid 2.0 requirement and outlined below in the section titled "Other Capabilities."

Note that it is not expected the platform itself would have any identifiable presence to remote (external to the platform bus) clients, but rather the
service endpoints hosted within the platform would be discoverable. Components and services bound to the local bus, however, would all be
potentially discoverable to other local components on the bus.

Note
This document must make explicit the process by which services would be discovered (akin to today's Index Service)

Business Processing Capability Family

The platform business processing capability family provides the infrastructure necessary to create and manage processes consisting of the
choreography or orchestration of various other local and non-local services or resources. Most components in this family are aimed at providing
declarative, higher-order, definitions of processes as opposed to those functionally defined by business logic in a typical programming language.

Workflow: The workflow services support the creation and management of service choreography and orchestration.

Data Transfer: The data transfer services support the import and export of data (typically large scale) to and from the platform environment.

Rules Engine: The rules engine services typically are used to create platform actions based on bus-configured policies.

Note
This document must address how human interacting processes will be related.

Other Capabilities

The capabilities described below include various other services and capabilities that are not required to build a functional platform, but that are
fully anticipated to provide significant value to, and thus significantly ease the burden on, the application and service developer. A selection of
services from the core layer service would also fall into this category.

Data Transformation: Leveraging the tight coupling of semantics, this service should facilitate the syntactic transformation of data from one
format to another. This has applicability to cases where disparate services and data sources express the same or similar sets of information using
different syntaxes (object oriented versus spreadsheet or forms) in the context of a workflow which requires manipulation of this data in a common
representation.

Data sharing, Data discovery and Federated Data Query: This is the capability to easily share existing data sets via platform services to be
discovered by others (with appropriate security privileges), and to retrieve data from related data sets as an integrated, cohesive data set. A
common need in the healthcare community is to provide easy discovery of, access to, and visualization of existing healthcare data sets. Two
approaches to perform federated data query are to 1) perform federated query as a service orchestration, calling specific methods on related

services to retrieve integrated data sets or 2) to perform federated query as an invocation against a federated query service that leverages
general-purpose query capabilities provided by individual services to perform joins, aggregations, and other operations.

Data De-identification: A common requirement for dissemination of data involves privacy issues. A service could automate the process of data
de-identification, using the semantic knowledge of what that data means to discriminate between private or sensitive information and
non-identifiable or otherwise non-sensitive information. Such a service should be configurable to enable various levels and styles of
de-identification, including but not limited to wholesale removal, remapping values, and leaving certain values alone based on the audience.

Data Identifiers: Some means of uniquely identifying an individual piece of data in the grid should be provided. An identifier should be universally
unique, versionable, and permanent. Such an identifier should also be opaque so it may be passed between entities on the grid without requiring
de-identification or other heavyweight security measures.

Identifier to Data Resolution: The grid needs to resolve identifiers back to their source data. Since the identifier is universally unique, it should
also be universally resolvable by any identifier resolution service on the grid and redirect the client appropriately.

Vocabulary: The platform will provide the ability to discover and use terminology and ontology resources both local and remote.

6.5 - Platform Implementation for caGrid 2.0

6.5 - Platform Implementation for caGrid 2.0

February 23, 2011 Working Draft

This section includes the following:

Language Choice
Bus Implementation
Service Implementation

Overview of Service Implementation
SOAP Web Services
RESTful Web Services
Contrasting SOAP and REST
Technology

JAXB
JAX-WS
JAX-RS
Common Characteristics of the Specifications

Technology References

Language Choice

The caGrid 2.0 platform will be developed in Java, as the current version of caGrid 1.x is written in Java, and Java has a vibrant enterprise
community that provides open-source technologies suitable for development of caGrid 2.0.

Bus Implementation

The central bus shown in the conceptual platform architecture could ultimately be implemented by a number of technologies, as it is primarily a
vehicle for decoupling services and components from each other, and providing a way to wire them together at runtime based on configuration
and policy. The most prevalent technology used for this in the industry in Java, is the Enterprise Service Bus as defined by the Java Business
Integration (JBI) specification. There are numerous open source and commercial JBI implementations available. JBI is a natural fit for a service
integration environment as it is built upon the same conceptual model as Web Services Definition Language (WSDL). JBI employs a normalized
messaging language (XML), and provides means to describe message exchanges between components.

An approach gaining traction in the industry is coupling the power of an Enterprise Service Bus (ESB), with the fine grained component and
service isolation and lifecycle management of the OSGi (formerly Open Services Gateway initiative) standard. OSGi defines a mechanism of
tightly controlling the classpath of components co-located (such as on an ESB), and provides a formally defined life cycle for installing,
uninstalling, and updating components at runtime. Finally, OSGi contains a very light-weight service registry suitable for simple service discovery.

Several modern ESBs (for example, ServiceMix4, FUSE ESB, Eclipse Swordfish) employ JBI for routing, and OSGi kernels for managing
component lifecycles and dependencies. This type of platform provides a very convenient way to achieve the multiple version support caGrid 2.0
aims for, as well as the local "on bus" service support desired to provide platform capabilities such as security services. In such an environment,
components can easily reference capabilities such as Authentication just by referencing their interface, without regard to their implementation
(which may be a local legacy system, or a call to a remotely hosted service).

Ability to reference the interface naturally enables both the notion of supporting multiple concurrent versions of components in a common runtime
(which may be useful for backwards compatibility reasons), as well as transparently configuring a platform for a new deployment environment. For
example, a "Discovery Service" that returns service endpoints based on some service selection criteria could be specified and used within
application and service implementations, and have multiple implementations appropriate for different governance environments. The default
implementation, appropriate for a local developer's laptop deployment, could be configured to only return services found within the local platform

(that is "on bus"). A different implementation, perhaps relevant to simple single institution scenarios, may be implemented to find services from a
static configuration file, controlled by the local deployment team. Finally, another implementation, most appropriate for a "grid wide" deployment
model, may be implemented by proxying discovery requests into invocations of a remotely deployed "Discovery Service" or registry, maintained
by the targeted grid community (for example caBIG®).

It is important to note that all three implementations can co-exist in the OSGi runtime environment, and the decision on which to use for a given
service or application request is a configuration or policy decision. This can be controlled via a policy administrator, without affecting or changing
the service or application code. Similarly, in the proxy-based implementation, the end point of the remote service or registry can be configured via
policy and not affect service or application code. The notion of isolating such policy decisions from developer created code is important to
supporting the goal of multiple governance models, as well as "making easy things easy" by easing the transition from development environment
to grid-wide production.

Service Implementation

Overview of Service Implementation

As the conceptual platform architecture primarily is concerned with hosting and supporting the needs of services, it is important to understand the
prevailing mechanisms by which most services are expected to be implemented within the platform. caGrid 2.0 intends to support web service
development as the primary externally facing service implementation layer. A web service is defined by the World Wide Web Consortium (W3C)
as "a software system designed to support interoperable machine-to-machine interaction over a network." While most description languages are
transport-agnostic, the term web service typically implies that clients and servers communicate over the network via HTTP. Such services are
generally implemented in industry today via SOAP (formerly Simple Object Access Protocol) web services, or RESTful Web Services
(Representational State Transfer (REST)).

SOAP Web Services

SOAP Web Services use Extensible Markup Language (XML) messages that follow the SOAP standard and have been popular with traditional
enterprise. In such systems, there is often a machine-readable description of the operations offered by the service written in the Web Service
Definition Language (WSDL). WSDL is an XML format for describing services as a set of endpoints operating on messages, and is not specific to
HTTP as a transport or SOAP as a binding; however that is the most common industry use. Some industry organizations, such as the Web
Services Interoperability Organization (WS-I), mandate both SOAP and WSDL in their definition of a web service.

RESTful Web Services

While a fairly mature concept, more recently, REpresentational State Transfer (RESTful) Web Services have been regaining popularity due to
their simplicity and compatibility with lightweight clients (such as web browsers and mobile platforms). RESTful Web Services leverage more
completely investments that organizations have made in web infrastructure including HTTP servers. RESTful Web Services also leverage
well-established aspects of the HTTP protocol including: negotiations for media types, caching, authentication, and the HTTP methods such as
PUT (replace or update), GET (list or retrieve), POST (create), and DELETE (delete). SOAP-based web services have an official standard, but
RESTful web services so not. This is because REST is an architecture style, unlike SOAP, which is a protocol. Even though REST is not a
standard, a RESTful implementation such as the web can use standards such as HTTP, Uniform Resource Locator (URL), XML, and Graphics
Interchange Format (GIF).

Contrasting SOAP and REST

In specifying a web service, the exposed service functional capability is specified without regard to a specific interface signature, transport binding
or security requirements. There are many situations where it is desirable to expose a service functional capability through both a SOAP-enabled
endpoint and RESTful endpoint, exploiting the strengths of each approach to meet the needs of different service consumers.

Note that that Enterprise Conformance and Compliance Framework (ECCF) does not prescribe a particular Service-oriented Architecture (SOA)
approach such web services, or a particular architectural style such as message-based SOAP Web Services or REST. caGrid 2.0 implementation
is using web services and intends to support both SOAP and REST. caGrid 2.0 service developers are free to choose between SOAP and REST
web services as implementation approaches. Comparable support will be provided for both approaches.

In addition, ECCF does not mandate a particular on-wire data format. caGrid 2.0 service developers are therefore free to choose data
representation on the wire such as XML, JavaScript Object Notation (JSON), or Resource Description Framework (RDF). caGrid 2.0 will have
varying levels of native support for different data representation, with strongest support for XML.

SOAP web services and RESTful web services are both very useful tools that have advantages and disadvantages. When defining a concrete
implementation of a service it is important to pick the best tool for the specific job. The table below outlines some of the attributes that a transport
may need to have. Not all of these attributes are always needed, so it is important to use the simplest tool that can get the job done. Where the
advantages of SOAP are necessary to meet the transaction requirements, then a SOAP web service should be chosen. There are times when the
requirements allow for a transport with specifications for both REST and SOAP. There are many situations where it is desirable to expose a
service capability through both a SOAP-enabled endpoint and a RESTful endpoint, exploiting the strengths of each approach to meet the needs of
different service consumers.

Web Service Functionality SOAP REST

Client Requirements Requires a SOAP stack Minimally functional with a web browser or HTTP
agent

Web browser Support XML/WSDL do not contribute to a good end user
experience; requires a custom webapp

Built on top of web protocols and hence provides a
better browser-based user experience (for GETs)

End-to-End Security Standardized specifications and implementations for
message-level security

No formal method; point to point only

Federated Identity Supports federated identity using for example WS-Trust Minimal support using OpenID, OAuth or both

User authentication Mature support for multiple authentication profiles (for
example, WS-Security (X509 Cert, Username/password,
Security Assertion Markup Language (SAML))

Leverages browser for user authentication,
generally username/password (OAuth and OpenID
require redirect to human readable page)

Server Authentication Secured using Transport Layer Security (TLS), server or
mutually authenticated

Secured using TLS, server or mutually
authenticated

Intermediary support Standardized via WS-Addressing Minimal support for composition

Synchronous Invocation Yes Yes

Asynchronous Invocation Yes Convention-based (via 202 response and polling)

Interface Definition Well-formed interface definition protocol (WSDL) Web Application Description Language (WADL
W3C Member submission); generally relies upon
documentation and uniform interface

Interface Versioning Built into WSDL No formal method. Industry best practices include
encoding versioning in the HTTP ACCEPT header,
or encoding into the URL.

Support for Reliable
Messaging

Can be provided using WS-Reliable Messaging,
WS-Reliability

No formal method

Support for Binary
attachments

Built in using Message Transmission Optimization
Mechanism (MTOM)

Can be done using MIME types (Multipurpose
Internet Mail Extensions) in GET. POST/PUT
requires additional support

Support for multiple
attachments

Built in using MTOM Can be done using MIME types in GET.
POST/PUT requires additional support

Deployment ease Typical Web Application Repository (WAR) deployment
model

Typical web application deployment model; static
information such as RDF can be served as files
using web server

HTTP header negotiations Not used Most HTTP header negotiations leveraged

Operations/Commands Developer-defined operation vocabulary Fixed Set: PUT (replace or update), GET (list or
retrieve), POST (create), and DELETE

Transactions Supported using WS-Atomic Transaction and other
methods

No formal method

Participation in
Orchestration/Choreography

Supported using Web Services Business Process
Execution Language (WSBPEL), Web Services
Choreography Description Language (WS-CDL)

Supported using Mashups

References: .HITSP Common Data Transport Technical Note HITSP/TN907 (posted on hitsp.org)

Technology

The following technology recommendations are specific to this platform and as a result are platform-specific. It is vital to note that this is a
mapping from the platform-independent architecture to this Java-based platform.

JAXB

The Java Architecture for XML Binding (JAXB) provides a convenient way to process XML content using Java objects by binding its XML schema
to Java representation. It is a foundational standard upon which the SOAP and RESTful web service java implementations rely to link java
implementation classes to their corresponding XML representation (such as in request and response messages).

JAX-WS

The Java community has made significant advancements in standardization and adoption for SOAP-based web service development and
specification (as documented on sun.com|http://java.sun.com/developer/technicalArticles/J2SE/jax_ws_2/]). All major comprehensive web service
frameworks in Java are now based on JAX-WS, and its use promotes significant advantages in the long-term sustainability and
framework-independence of the services developed on it. Services created using the JAX-WS specification are platform-independent, for
example, they use WSDL as an interface definition. This ensures that external communities, developers using other platforms, and CBIIT platform

http://www.hitsp.org/ConstructSet_Details.aspx?&PrefixAlpha=5&PrefixNumeric=907

1.
2.
3.

developers, experience minimal impact from underlying technology stack changes. Moreover, although JAX-WS is a Java-specific specification,
this does not affect the web service interfaces in any way; it is purely an implementation concern. Furthermore, WS-I compatibility and
interoperability with other platforms is a chief concern and tested with modern platforms such as CXF (a merging of the Objectweb Celtix project
and the Codehaus XFire project).

JAX-RS

JAX-RS (documented on sun.com) is a standard for creating a service that allows a service developer, independent of the technology
implementation, to create interoperable RESTful services. JAX-RS has emerged as the primary specification for developing RESTful Web
Services, and as a result, has significant support within the open-source and commercial communities. The chief advantages of using JAX-RS as
a standard are

To produce a service that adheres to an industry-standard RESTful architectural style
To ensure that the resulting service is platform-agnostic, and
To shield the service developer using JAX-RS from technology changes.

Common Characteristics of the Specifications

All three specifications support (in addition to other configuration options) an annotation-based approach to the binding, that reduces the
complexity of configuring and using the specifications, and provides a documentation-based approach to putting the information and configuration
directly in the classes. These annotations are also standardized by the Java Community Process (JCP), and avoid the "vendor lock in" concern, in
that they are interpreted by the selected runtime environment rather than being trapped in some vendor-specific configuration file.

Compatibility is a key requirement of the . JCP-developed technologies require aJava Community Process (JCP) (described on jcp.org)
specification, proof of concept Reference Implementation (RI) and Technology Compatibility Kit (TCK). The TCK is a collection of tests designed
to verify an implementation's compatibility with the specification; for the implementation to be compatible all the valid tests must be passed.
Leveraging this process in making technology choices is very useful to prevent vendor lock-in and easy migration to other compatible technology
stacks that have passed the TCK tests.

Technology References

SOAP versus REST (on it.toolbox.com)
JAX-RS: Developing RESTful Web Services in Java (on devx.com)
JAX-RS article (on wikipedia.org)

6.6 - CBIIT Adopt or Build Tools Recommendations

6.6 - CBIIT Adopt or Build Tools Recommendations

February 23, 2011 Working Draft

This section identifies the specific technologies and tools which the team recommends to achieve the aims and reference implementation of the
platform architecture described in the previous sections. The following topics are included:

General Recommendations and Evaluation Criteria
Enterprise Service Bus
Business Process Management
Container Framework
Service Registry

General Recommendations and Evaluation Criteria

The team evaluated several open source products to suit the needs of the caGrid 2.0 platform. This evaluation took several factors into account,
including current experience, level of community uptake, and the evaluation criteria used by Jeff Davis in his book .Open Source SOA

Jeff Davis' evaluation criteria are as follows:

Criteria Comments

Viability Is the product widely used, and does it enjoy a strong user community? Is the solution well documented? Are sufficient
development resources committed to the project?

Architecture Is the architecture of the product complementary to the other products being evaluated? Is it well documented and logical, and
does it adhere to common best practices and patterns?

Monitoring
and
management

Does the product provide off-the-shelf monitoring and management tools? Since this team is mostly evaluating Java products,
does it utilize JMX, which is the standard for instrumentation and monitoring of Java applications?

http://java.sun.com/developer/technicalArticles/WebServices/jax-rs/index.html
http://jcp.org/en/home/index
http://it.toolbox.com/blogs/the-soa-blog/soap-versus-rest-9225
http://www.devx.com/Java/Article/42873
http://en.wikipedia.org/wiki/JAX-RS

Extensibility Can the off-the-shelf solution be extended to add new functionality? Does a pluggable framework exist for adding new
functionality?

"True" open
source

This is a sensitive topic, but this team wants to consider only products that are licensed using one of the common open source
licenses: General Public License (GPL), Lesser General Public License (LGPL), Berkeley Software Distribution (BSD), Apache,
or Mozilla Public License. It is recommended that CBIIT avoid, if possible, "free" or "community" versions that retain restrictions
in usage or modification.

The team is inclined to choose a suite of tools and products that will work together in a seamless fashion with a minimum of additional coding and
configuration required to enable that interaction.

With the above criteria in mind, the team makes the following recommendations.

Enterprise Service Bus

The team recommends an ESB implementation based on the OSGi ((formerly Open Services Gateway initiative) framework. OSGi has a large
and growing base of support and vendor integration options which make it a viable option for a long term solution. Specifically, the team
recommends the use of to fulfill this role. ServiceMix is well supported, documented, and widelyApache ServiceMix (described on apache.org)
used. It leverages OSGi and Java Business Integration (JBI), supports Spring for configuration, and makes use of ActiveMQ for remoting,
clustering, and fail-over.

Business Process Management

The team recommends a Business Process Management system which can interact out-of-the-box with the ESB of choice. In this case, JBoss
Business Logic Integration Platform, , fits this need. The Apache ServiceMix ESB Drools (described on jboss.org) integrates nicely with JBoss (as

. Drools provides robust support and has a large adopter community.explained on apache.org)

Container Framework

A container framework is required to enable platform instances to communicate with external entities and provide web service endpoints. The
team recommends for this purpose since it supports JBI with the ServiceMix ESB and "speaks" aApache CXF (described on apache.org)
multitude of wire protocols including Simple Object Access Protocol (SOAP) and Representational State Transfer (REST).

Service Registry

To be provided.

7 - Security for caGrid 2.0

7 - Security for caGrid 2.0

February 23, 2011 Working Draft

This section includes the following:

7.1 - Overview of Security for caGrid 2.0
7.2 - Communication Security
7.3 - Authentication
7.4 - Authorization
7.5 - Delegation
7.6 - Trust
7.7 - Audit
7.8 - Privacy

7.1 - Overview of Security for caGrid 2.0

7.1 - Overview of Security for caGrid 2.0

February 23, 2011 Working Draft

This section provides an overview of the caGrid 2.0 security framework. The following topics are included:

http://servicemix.apache.org/home.html
http://www.jboss.org/drools/
http://servicemix.apache.org/jboss-deployer.html
http://servicemix.apache.org/jboss-deployer.html
http://cxf.apache.org/

1.
2.
3.

SOA Design and Security and Privacy
Major Components of the caGrid 2.0 Security Framework
Illustration of Security Framework Support for the TCGA Use Case

SOA Design and Security and Privacy

Service-Oriented Architecture (SOA) design principles offer the prospect of disentangling security and privacy functionality from healthcare clinical
and administrative applications and making complex security and privacy capabilities available through straightforward service interfaces and
service agents. Benefits of this approach include:

Support is provided for highly-distributed health information networks
Policy-driven approaches are enabled for meeting security, privacy and interoperability requirements
Policy management can be delegated to the persons bearing business-level responsibility without the need for them to become security
and privacy experts
Application developers can focus on clinical and business solutions
Support is provided for payload-neutral messaging infrastructure that maintains healthcare information integrity and confidentiality
Reduction is achieved for inadvertent tight coupling of services due to security and privacy requirements

However, the benefits of distributed health information networks come with a price – exchange of healthcare information across security and
privacy domain boundaries introduces new security and privacy threats and vulnerabilities. In addition, cross-domain interoperability and policy
management issues arise for identity management, privacy management, access control and audit.

In addition to the security and privacy requirements typically encountered in service-aware enterprise information technology environments, the
caGrid 2.0 use cases exhibit characteristics that present major challenges for meeting security, privacy and interoperability requirements. These
include highly dynamic, complex interactions involving fine-grained access to multiple resources; multiple Virtual Organizations (VOs) that each
have credentialing and policy requirements; and enforcement of access policies that must combine policies across multiple jurisdictional, security,
privacy and administrative domains.

Major Components of the caGrid 2.0 Security Framework

Details concerning major components of the caGrid 2.0 security framework are presented in the following sections:

7.2 - Communication Security - Provides integrity and privacy while data and messages are in transport.

7.3 - Authentication - Provides a framework to establish the identity of an entity.

7.4 - Authorization - Provides support needed to determine if an entity can be granted access to a resource.

7.5 - Delegation - Provides mechanisms that allow an entity to delegate its rights to another, to act on behalf of or act as the entity. Delegation is
critical in supported service orchestrations, federated queries, web single sign on, and other federated access patterns.

7.6 - Trust - Provides the security fabric in a federation, by pulling together the various assertion issuing authorities, including identity,
authorization and attribute, into a trust framework. The trust framework provides for definition, establishment, provisioning and managing of these
trust authorities.

7.7 - Audit - Handles the recording and maintenance of service events from other services. It captures, into privileged audit logs, necessary audit
information to ascertain compliance with governing policies and procedures derived from agreements, with an organization's internal policies, and
with any applicable law or regulation.

7.8 - Privacy - Provides a framework to support realization of limitations on the collection, use, and disclosure of patient information; provides for
patient participation and control; provides security safeguards on data access, integrity, re-identification, and quality; and provides accountability.
These privacy principles are reflected in the Health Insurance Portability and Accountability Act (HIPAA) privacy rule and Health Information
Technology for Economic and Clinical Health Act (HITECH) meaningful use regulations.

Illustration of Security Framework Support for the TCGA Use Case

To illustrate the security capabilities discussed in this section, we show their application to The Cancer Genome Atlas (TCGA) use case outlined
in section , specifically use case number 4.0, step 1. The use4.1 - Translational Medicine, Research and Personalized Medicine for caGrid 2.0
case has the precondition that the pathologist has been authenticated, and follows the steps below.

Image Analysis algorithm performs automated analysis (feature extraction) of the image and adds annotations.
Simple analysis and analysis on a region of interest may be performed on the pathologist workstation.
Whole slide analysis and screening and parameter studies may be conducted on clusters.

Figure 7.1.1 Security Framework Support for the TCGA Use Case

In a secure deployment, all the communication security mechanisms protect the integrity and privacy of messages in the environment. In this
diagram, security and privacy services are coordinated through the Policy Enforcement Points (tagged «PEP» in the diagram) of the Image
Analysis Service and the Image Data Service. Access control (that is, Authorization decisions) and privacy enforcement procedures are applied
by these PEPs.

Authentication occurs prior to the start of image analysis workflows, with the user logging in via pathologist workstation interaction with the
Authentication Service. The returned Authentication Trust Token (yellow) is passed along the image analysis workflow (black arrows and gray
components) to the Image Analysis Service. The Image Analysis Service obtains an Authorization Trust Token (green) from the authorization
service which interacts with the authorization policy source.

The Image Analysis Service requests data from Image Data Service, providing the Authentication Trust Token together with a bound Delegation
Trust Token (peach) delegating the rights or credentials of the user to the Image Data Service. The Image Data Service also requests an
authorization decision confirmed via a second Authorization Trust Token (green). It also leverages privacy policies (purple) and privacy preserving
service components, such as de-identification capability, applied through the Image Data Service PEP to protect the privacy of the data.

Both Image Analysis and Image Data Services record audit information via Audit Trust Tokens (teal) submitted to their respective Audit Services.
All services and communication that use authentication and authorization must also rely on the Trust Message Infrastructure to ascertain the
validity of the Authentication and Authorization Trust Tokens (light blue cloud/paths and Trust Token flow arrows).

7.2 - Communication Security

7.2 - Communication Security

February 23, 2011 Working Draft

This section includes the following:

Overview of Communication Security
Transport Level Security
Message Level Security

Overview of Communication Security

Communication security solutions address the requirements for data integrity and privacy, while the data is in transit. The use cases described
earlier in this document motivate the need for assurances that the data was not modified or tampered with in transit, and in some cases that the
data is visible only to the intended recipient and not any other party during transit.

Data integrity provides assurance that the data was not modified in transit, and is accomplished by digitally signing the data. Data privacy
provides assurance that the content of the data was not viewable to another party, and is addressed by encrypting the data before putting it on the
wire, such that only the receiving party can decrypt it.

Communication security for caGrid 2.0 should support both "data integrity" and "data privacy." Communication security can be provided at the
communication channel level, and is referred to as Transport Level Security, where the message is secured between the two endpoints that are
communicating. The other aspect of communication security is Message Level Security which refers to securing of the payload such that integrity
and privacy assurances can be made at the final intended recipient, irrespective of the number of endpoints involved in routing the message.

Transport Level Security

To support transport level security for services we recommend using .Hypertext Transfer Protocol Secure (HTTPS) (described on tools.ieft.org)
HTTPS is a combination of the Hypertext Transfer Protocol with the Secure Sockets Layer Transport Layer Security (SSL/TLS) protocol to provide
integrity and privacy protection to the communication channel, and encryption and secure identification of the server. The main idea of HTTPS is
to create a secure channel over an insecure network. In addition, HTTPS can be used to identify communicating parties and thus provide
mechanisms to trust the channel to the server. These aspects are discussed in sections and .7.3 - Authentication 7.6 - Trust

The above is applicable to any application wire protocol, and can be used with Simple Object Access Protocol (SOAP) or Representational State
Transfer (REST) services.

Message Level Security

To support message level security for SOAP web services we recommend WS-Security (Web Services Security). WS-Security is a flexible and
feature-rich extension to SOAP to apply security to web services. WS-Security specifies how integrity and confidentiality can be enforced for
messages and allows the communication of various security token formats.

The token formats and semantics are defined in the associated profile documents, which extend the WS-Security specification. We recommend
using the WS-Security token profiles when a SOAP web service requires a client to authenticate, and relevant authentication tokens as outlined in
section .7.3 - Authentication

For REST services, message-level security support depends on the content or payload type. Security standards such as Secure Multipurpose
Internet Mail Extensions (MIME) and secure ATOM format documents, can be leveraged to provide message level security. However, it should be
noted that key-based security mechanism used for browser clients is limiting and not a usable solution for the clients. In such cases, alternative
models can be considered, such as trusted intermediaries like reverse proxies that can decorate requests and responses with required security
information or portals.

7.3 - Authentication

7.3 - Authentication

February 23, 2011 Working Draft

This section includes the following:

Overview of Authentication
Authentication Token
Secure Token Service (STS)
Authentication Using Token

SOAP Web Services
REST Services
Web Portal

Overview of Authentication

As identified in section , it is critical that the identity be determined of requestors for secure access to a resource. In5 - caGrid 2.0 Requirements
Service-Oriented Architecture (SOA) systems, end user identity is managed and asserted by Identity Providers, with typically one or more
providers per domain. End users authenticate with the Identity Provider, which asserts the user's identity, and the assertion is used to convey
identity information to other services for authentication. Within a federation, policies that establish and provision trusted Identity Providers are key,
and are described in section .7.6 - Trust

One of the major goals of the caGrid 2.0 infrastructure is increased interoperability, such that independent implementations can interoperate with
each other. For example, vendor-built systems and systems provided by other federations should be able to consume each other's services. To
achieve the desired interoperability the caGrid 2.0 infrastructure requires integration of many Identity Providers that issue disparate types of
authentication credentials or tokens. That being said, caBIG® services cannot be expected to consume and validate every kind of credential, and
thus a mechanism is needed to normalize credentials across caGrid.

http://tools.ietf.org/rfc/rfc2818.txt

The infrastructure should support an approach that allows services in caGrid to accept some agreed-upon token types, with mechanisms to
translate token types from different Identity Providers. A Secure Token Service (STS) provides interfaces for translation from one token type to
another, and abstracts the specific translation from the client. The STS would validate the token presented to authenticate to the service, and
return a token of the desired type. The STS itself might use external Identity Providers for authentication and validation of the input token.

Once the token exchange is completed, the client presents the token for authentication to the resource it needs to access. The resource validates
the token, including whether it trusts the issuing authority. Infrastructure requirements for trust provisioning and managing are discussed in section

. Once a token has been validated and accepted, it is used by the resource to establish the client's identity.7.6 - Trust

In addition to authentication assertions, the token may carry attributes about the user, as issued by the Identity Provider. Tokens and transport
mechanisms that support such attribute push must be supported by the infrastructure.

In addition to end user authentication, service-to-service communication must also be protected by authentication, such that the requesting
service identity can be established.

Authentication Token

It is highly recommended that NCI identify and agree on a set of authentication token types, that will be accepted by all NCI Enterprise Services,
to provide a common way for authenticating requestors and integrating Identity Providers. Support for a standard token type will enhance
interoperability and simplify service orchestration. The infrastructure should not limit caGrid services from accepting additional credential types, if
desired by the service operators, since this might be required for interoperability with other federations.

It is recommended that the platform support short-lived as authentication tokens. This is aX.509 Certificates (explained on datatracker.ieft.org)
widely used mechanism for authentication, and provides standards for mechanisms for identity assertion, validation, and revocation. Attributes
may be added to this token type as certificate extensions with Security Assertion Markup Language (SAML) Assertions of Attribute Statements, or
Attribute Certificates may be used.

To meet interoperability requirements, we also recommend use of Security Assertion Markup Language (SAML) (described on saml.xml.org)
assertions with Authentication Statements as a token type for the authentication credential. SAML is an XML-based standard for exchanging
authentication and authorization data between security domains, that is, between an (a producer of assertions) and a assertion issuer service

 (a consumer of assertions), and can be cryptographically secured as an independent data unit, such that the validity of the SAML dataprovider
can be verified. It is recommended that 2.0 version of the SAML specification be used for all uses mentioned in this document.

SAML assertions with the Holder of Key Subject confirmation method and SAML bearer assertions for browser based access, are specific token
types that provide authentication assertions to consumers, and should be supported in the infrastructure.

Attributes may be added to this token, as Attribute Statements. Attributes added to the tokens provide additional information about the subject of
the assertion. In order for endpoints to be able to consume an assertion they must be able to process the attributes of an assertion. Therefore the
attributes contained in the assertions must be harmonized across identity providers. Such harmonization must define (1) the list of possible
attributes that can be in an assertion, (2) a standard representation for each attribute, and (3) which attributes are required and which are optional.

It is recommended that X.509 Credentials be used for service identity and authentication.

This would imply that all services, such as the Image Analysis Service and the Image Data Service in the The Cancer Genome Atlas (TGCA) use
case would have an X.509 Credential, and a unique identity. In addition, these services should be able to consume and process authentication
tokens of the recommended format, that is, X.509 Credentials and SAML Tokens.

Secure Token Service (STS)

caGrid 2.0 infrastructure should support standard interfaces for the STS, such that clients and services can leverage the service for token
translation.

Web Services Trust (WS-Trust) is an industry standard implementation-agnostic specification for security token exchange between parties
seeking to establish interoperable trust relationships across heterogeneous security infrastructures. The language defines a request and response
protocol by which entities can make requests of a trusted authority to map and exchange disparate security tokens.

In addition to the WS-Trust interface, which works with any client that uses Simple Object Access Protocol (SOAP), we recommend an additional
interface be supported by the STS to facilitate Representational State Transfer (REST) client interaction. This would be like an "HTTP binding to
WS-Trust", and the interface would treat each token as a resource. Operations to request, renew or delete a token can be mapped to the generic
HTTP protocol POST, PUT, and DELETE operations. The format of the request and response and the tokens can be similar to the format used for
SOAP services. It is recommended that 1.4 version of the WS Trust specification be used across the infrastructure.

Figure 7.3.1 Use of STS with Credentials Issued by an Organization

http://datatracker.ietf.org/wg/pkix/charter/
http://saml.xml.org/

Note
The description is being developed

The figure above illustrates how an STS can be applied to allow applications to be developed that use organization-provided credentials from
multiple organizations, to access NCI enterprise services. For example a university that uses a username and password for credentials and LDAP
as the identity provider, would develop an STS that accepts a username and password and validates it against its LDAP server. Likewise a
government organization which uses Personal Identity Verification (PIV) Cards for credentials would develop an STS that accepts a PIV Card and
validates it against it issuing authority. The STS enables any identity provider, such as a commercial identity provider, using any potential type of
credential to be integrated into the NCI federation. Upon validating a token, an STS implementation must issue another token (that is, SAML or
X.509), which will be used for proving identity to NCI enterprise services, such trial registration, subject registration, adverse event, protocol
management and services used in the TCGA use case.

Under this paradigm, an STS interface will be required for each Identity Provider that needs to be integrated, either directly implemented with the
Identity Provider or a by a model where the STS consumes the Identity Provider's assertion. All interactions for the STS should be evaluated for
security considerations, and it is recommended that HTTP Secure (HTTPS) be used for communication.

While the STS can be used to exchange any token type, including the types discussed in previous sections and custom token types, it should be
noted that caBIG® as a community should agree on a set of acceptable token types and profiles for those token types. This will be important in

achieving the desired interoperability across caBIG®.

Authentication Using Token

There are standards that can be leveraged for communicating the authentication token to a consumer, for a client to authenticate. In all cases, the
privacy and integrity of messages sent between the client and the server should be considered and appropriate encryption and signature
mechanisms should be applied. Further the consumer must validate the assertion and establish trust in the issuer, and the infrastructure should
provide support for the same.

SOAP Web Services

Any client that needs to authenticate with a SOAP web service, first needs to obtain a SAML assertion, the agreed upon standard authentication
token, from an STS. , in conjunction with provide a wayWS-Security Policy (described on the OASIS site) WS-Trust (described on the OASIS site)
to establish agreements about the nature of the security token exercised in a subsequent transaction. The result should be that a client and
service endpoints are guaranteed to receive only relevant and recognizable security tokens. Thus with use of a WS-Policy and WS-Trust STS, a
client can obtain the the specific type of token needed by the server for authentication.

If SAML tokens are used, it is that the SAML token be provided to the service using the highly recommended WS-Security (described on the
 .OASIS site) SAML Token Profile (described on the OASIS site)

REST Services

Use of the received token for authentication to a REST service can be done in multiple ways. Some suggested options include use of the HTTP
Authorization header, multipart Multipurpose Internet Mail Extensions (MIME) messages, or any of the HTTP bindings defined in Bindings for the
OASIS Security Assertion Markup Language (SAML) version 2.0. These options should be considered in the context of the size of the token,
application-agnostic processing requirements, and interoperability requirements, to determine the best option.

To meet the usability goals for caGrid 2.0, browser-based access to REST services should be supported for service developers to leverage if their
use case warrants it. This will require support for Web Single Sign-on (SSO) protocols, for the clients to authenticate with the service. This would
imply Authentication Service or Identity Providers (IdPs) should provide support for SSO protocols, and REST services be able to consume and
process assertions via such protocol. Examples include OpenID, or SAML SSO. Such protocols also define attribute push from the Identity
Provider, as part of the authentication assertion in response. Adoption of such standard protocols for user authentication will also allow caGrid 2.0
deployers and users potentially to leverage existing Identity Providers that use the standard protocol, and federations and trust levels already
established.

Models that use reverse proxy for adding security tokens to the request or internal authentication service redirection for token assertion can be
considered for supporting site-wide policies and requirements for token formats. Use of such patterns will move the burden of supporting multiple
token formats from individual consumers to an infrastructure service that does the translation or issues the assertion.

Web Portal

Authenticating to any Web Portal can follow similar processes to the browser-based access mentioned above. The web portal should allow use of
external Identity Providers, and login of users using a Web SSO protocol. This will ensure that client credentials for authentication with the Identity
Provider do not flow through the portal. This only covers authentication to access the portal. Refer to for delegation to a portal.7.5 - Delegation

In this solution space, the communication by authentication tokens to a REST service requires further work.

7.4 - Authorization

7.4 - Authorization

February 23, 2011 Working Draft

This section includes the following.

Overview of Authorization
Recommendations for caGrid 2.0 Authorization
Authorization Implementation Model

Overview of Authorization

Authorization is a critical component of enterprise security within and across enterprises. Authorization enables resource owners to enforce
fine-grained policies concerning who, what, when, and how access is granted to a resource. caGrid 2.0 should support features to meet the
requirements described in section . The resource itself may be as simple as a row in a database or as complex as a5 - caGrid 2.0 Requirements
workflow being executed across several services within a Service-Oriented Architecture deployment.

Figure 7.4.1 Authorization--Context Aware, Policy Driven

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf

A Policy Enforcement Agent, often also referred to as a Policy Enforcement Point (PEP), triggers the authorization process to determine whether
the requested action can be permitted or not. To do so, the process requests an access decision from the Policy Decision Service (Policy
Decision Point (PDP)) supplying the request parameters, including the subject, requested resource, and action. The process may optionally
include any additional Decision Factors supplied with the request, via Trust Tokens. Note that the the PDP interface is well defined, but the actual
implementation is up to the deployment, and can include incorporation of local or remote policy, including caching mechanisms.

The Policy Decision Service systematically steps through the rules encapsulated in the Access Policies, comparing decision factor criteria against
the matching decision factor values in order to reach an access decision. If a rule requires Access Decision Information not supplied with the
request, the Policy Decision Service may request the information through the Policy Information Service from a trusted resource using a standard
service interface. Once an access decision has been reached, a response is returned to the Policy Enforcement Agent where the decision is
enforced.

Sources of Access Decision Information must be trusted, integrity-verified and have confidentiality maintained as required. Policies define the
attributes that must be examined and criteria to be applied in reaching an access decision.

The Resource Authority has ultimate responsibility for the determination of the Resource Access Policy that must be applied to protect the
resource according to the objectives and policies of the Resource Owner. In reaching this determination and in formulating computable
representations of the overall Resource Access Policy, the Resource Authority may be informed by jurisdictional regulations, organizational policy,
virtual organization (VO) commitments and policy, patient privacy preferences, enterprise security policy, environmental considerations,
resource-specific policy and other factors.

A “combining” policy can be specified by the Resource Authority that can allow use of computable sub-policy artifacts (templates) provided by
other policy authorities. This can facilitate centralized policy management and dramatically simplify the provisioning of the Access Policy.

Recommendations for caGrid 2.0 Authorization

caGrid 2.0 authorization infrastructure must support at least the following features:

Abstraction of the authorization framework instance, such that it can be reused for enforcement anywhere in the call chain or service
itself. This feature is required for enforcement of policy on dynamic resources or policy that is tightly coupled with business logic, for
example in the case where a generic query is made to a resource and the results must be filtered based on the access that the caller
has. It may be inefficient to realize all the results and then apply the access policy outside the resource.
Layered integration of security with services supported, such that business logic is separated from the authorization logic and policy, to
enable multiple deployments of the service. Use of the framework at the request flow to the service will be a common deployment
scenario, and the framework should simplify that for use.
Chaining of Policy Decision Points, to allow for combining policies at different layers or jurisdictions, for example, for combining site level,
VO level and service level policy to determine the access decision. Common combining algorithms, including deny override and permit
override with delegation, should be supported such that it is fairly simple for developers and deployers to configure and use the
algorithms.
Contextual information to be fed into the decision process, including requester identity, attributes, access requested.
Multiple Policy Information Points to gather further contextual information in the form of attributes to feed into the decision process, so as
to support an attribute-based authorization model. Infrastructure support for specific profiles and standards to support common attributes
including groups and roles, will ease usability concerns for most commonly used attributes.
Decisions to be augmented with advice or obligations to be used at enforcement. This provides the Policy Enforcement Point with
additional parameters in cases where further restrictions on the decision are warranted.
Support for multiple models of authorization, including client push of authorization and attribute assertions and resource pull of
authorization and attribute assertions. Built-in support for some standard mechanism to push and pull assertions will lower the barrier for
adoption of push and pull assertions for service developers and deployers alike.
Caching and reuse of authorization decisions and attributes or both, with configurable policy on cache refresh and such, would much
improve performance.

Authorization Implementation Model

Standard languages such as Security Assertion Markup Language (SAML) and eXtensible Access Control Markup Language (XACML) can be
used to transmit policy information and express policy respectively. Those languages in combination with a provided authorization framework and
tools will enable a robust and very customizable authorization framework where information from trusted sources can be used to enable
fine-grained control of the authorization to access resources. XACML, a complimentary technology to SAML, enables the authorization policy,
which may act on the authentication information and attributes asserted by a SAML provider, expressed as an eXtensible Markup Language
(XML) document that can be processed by an authorization engine.

The diagram above illustrates the Policy Enforcement model, which includes three key actors: 1) Policy Decision Point (PDP) - the place where
the authorization decision is made, 2) Policy Enforcement Point (PEP) - the place where the authorization decision is enforced on a resource, and
3) Policy Information Point (PIP) - the place where information retrieved that can be provided to the PDP in order to make the authorization
decision.

For example, in a simple authorization exercise we can map real world scenarios to this Policy Enforcement model. If a user wants to call an
operation on a web service, the PEP, which is the web service, may use SAML to contact a PDP which will retrieve the actual policy that needs to
be enforced for the particular resource that is being requested by the user, in this case the web service.

Once the PDP receives the policy or policies it may determine that it needs more information, such as extra attributes from an Lightweight
Directory Access Protocol (LDAP) server. The PDP will then contact a PIP that contains this information by making an attribute request to the PIP
containing the information about the user. That is, the PIP will simply receive those attributes about the user from its local LDAP system. The PIP
can gather the attributes about the user and send them back using SAML to assert the attributes securely and with trust. At this point the PDP has
the policy and any required information, such as the extra attributes it needed from the PIP, to make the decision to give or refuse access to the
resource in question. The PDP will then make this decision and pass the result, using SAML, back to the PEP where the decision can be enforced
by either allowing or not allowing the user to execute the web service operation.

The XACML specification that is consistent with the Policy Enforcement model described above has been increasingly adopted in enterprise
security solutions over the last give years. Its platform-independent representation; rich, express ability for authorization policy; and
protocol-agnostic method of transportation, make it a strong contender for expression authorization in a service-oriented framework.

Agreed-upon versions of the above mentioned standards need to be to used to ensure interoperability. It is recommended that SAML 2.0 and
XACML be used for the authorization infrastructure.v??

Idea
Authorization policy management tool, that allows defining these policies in simpler terms (high level business terms?) that can
be translated.

7.5 - Delegation

7.5 - Delegation

February 23, 2011 Working Draft

Delegation is required for enabling an entity (delegatee) to perform an action for another entity (delegator). In caGrid 2.0 support for a user to
delegate to a portal or another service is required, as indicated by the use cases.

This section includes the following:

Types of Delegation
Recommendation for Delegation in caGrid 2.0
Delegation Token Generation
Delegation Token Communication
Delegation Token Validation

Types of Delegation

There are two types of delegation: a case where the delegatee acts as the client to access a resource and another where the delegatee acts on
behalf of the client to access a resource. In the first case, the client's identity is delegated to a delegatee, and the resource cannot differentiate
between calls from the client and delegatee. In the second case, the client delegates some rights to the delegatee, rather than the identity. The
delegatee contacts the resource using its own identity, and presents evidence of delegated rights to access the resource on the client's behalf.

For example, in The Cancer Genome Atlas (TGCA) use case, the client needs to delegates its rights to the Image Analysis Service to enable it to
query the Image Data Service to obtain the data and process the data on the user's behalf. In this case, the client could delegate its identity, in
which case the Image Data Service is accessed by the Image Analysis Service as the user. Alternatively, the client could provide the Analysis
Service with an assertion where a trusted authority asserts the rights of the Analysis Service to act on behalf of the user.

Recommendation for Delegation in caGrid 2.0

caGrid 2.0 infrastructure should support delegation of rights, and enable services and portals to be able to act on behalf of the clients. This should

include support for entities to assert such rights for delegation, and the ability to securely communicate this to the resources.

In many cases the client may be able to restrict the delegated rights, and thus be able to do fine-grained delegation to a delegatee, with a specific
target resource. Tokens used for such rights delegation should allow the user to be able to specify at least the following constraints:

Identity of delegatee
Identity of targeted resource
Time constraints on validity of delegation
Specific actions or rights delegated
Issuer identity
Cryptographic assurances on the validity of the token

Services in caGrid 2.0 should be able to consume and process such delegation tokens, and combine with local policy to determine specific
access rights.

For example, if a token from a client empowers an analytical service to access some data on the client's behalf, the data service accessed by the
analytical service must be able to consume such a token, and apply the policies for the client identity rather than for the analytical service. This
use of a delegating token might be combined with local policy about the client, such as whether the client is allowed to delegate particular rights,
and policy about the analytical service. Refer to section .7.4 - Authorization

While it is highly recommended that a delegation of rights model be provided and supported, for legacy software the caGrid 2.0 infrastructure may
have to support delegation of identity. In such cases a delegated token, different from the user's authentication token, should be provided to the
delegated entity.

Delegation Token Generation

Security Assertion Markup Language (SAML) defines authorization statements that can be used to express the rights delegated to a delegatee. It
is a recommended standard for expressing these delegations, and allows the capability to assert fine-grained client-defined assertions about the
delegated rights.

Multiple models for creation of these delegated tokens might be needed. In most cases, the delegator generates an assertion expressing the
rights that are delegated. In cases where thick clients are used, clients can generate these assertions, and cryptographically secure them with
their credentials.

To support browser clients, it is recommended that standards like be adopted. The OAuth protocol provides a consentOAuth 2.0 (on oauth.net)
mechanism for the client to delegate some rights to the delegatee to access a particular resource. Once the consent has been established,
delegation tokens of the required format can be provided to the delegatee. For example, SAML assertions as described above can be issued. The
issuer in this case can either be part of the resource or can be abstracted as a delegation service.

In cases where delegation of identity is required, SAML tokens that bind the delegator's identity to the delegatee key or Request for Comment
(RFC) 3820 Proxy Credentials can be used. These tokens are used by the delegatee for authentication to the resource.

Delegation Token Communication

A critical aspect of this model is for the delegation token to be communicated to the resource that is accessed, such that requests can be
evaluated with the delegation assertion.

In the case of Simple Object Access Protocol (SOAP) services, Web Services Security (WS-Security) defines profiles and bindings for
communicating SAML assertions in the header, and it can be used to push the delegation token to the resource, which consumes the token..

For Representational State Transfer (REST) services, mechanisms described in the OAuth protocol for such tokens to be pushed as part of the
HTTP Authorization header can be leveraged. Alternatives to using SAML HTTP Bindings or Multi-part MIME (Multipurpose Internet Mail
Extensions) to move tokens as part of the request allow for the clients to push these assertions to REST services. In browser clients, as described
in the previous section, use of the OAuth standard to communicate the tokens is recommended. Further evaluation of these techniques, based on
the delegation token format, is needed to determine the communication method most suited for the use cases.

In some cases, the delegatee is a trusted entity, and could be providing the assertion about the delegator to the consuming resource. For
example, a web portal accessing a back end REST service can authenticate the user using standard Single Sign-on (SSO) protocol, and then
issue a SAML Sender Vouches Token to provide the identity of the client on behalf of whom the request is being made. Additional delegation
assertions may be be included in the requests with information about the rights the client delegates. The web portal can then authenticate to the
REST service using its identity, and push these assertions to the REST service for processing. This is useful in cases where user interaction
required by protocols like OAuth is not feasible, and the intermediary, the web portal in this case, is trusted.

For identity delegation, an authentication token is provided to the delegatee, and it is used to authenticate to the resource.

In all cases, security requirements for communicating the token should be considered, and HTTP Secure (HTTPS) is recommended for channel
protection.

Delegation Token Validation

Irrespective of the mechanism used to communicate the token, the resource should validate the token. Among other things, the validation step
should include asserting token is from a trusted issuer (either the client delegating the right or some trusted delegation authority), and that it is
integrity-protected.

http://oauth.net/

In the case of identity delegation, the authentication establishes the caller's identity, and thus the delegated token is validated.

7.6 - Trust

7.6 - Trust

February 23, 2011 Working Draft

This section includes the following:

Trust Model
Trust Service
Relationship to Authentication Model
Relationship to Authorization Model

Trust Model

The trust model provides the security fabric in a federation, by pulling together the various assertion issuing authorities, including identity,
authorization and attribute, into a trust framework. The trust framework provides for defining, establishing, provisioning and managing these trust
authorities.

Within a collaboration, it is clear that the different participants will have tiered levels of confidence in the users and service management policies
of the various other participants. While generally all participants want to collaborate in some fashion, they will have services with varying security
policy enforcement requirements. The interconnections between clients and services that are able to securely communicate in the larger Grid,
together form conceptual overlays of trust, which are referred to as the "trust fabric" of the Grid. Figure 7.6.1 shows an example trust fabric
composed of four overlapping trust groups (Trust Groups A-D), over a worldwide Grid. Establishment, provisioning, and management of the trust
fabric are critical to the scalability, maintenance and security of the Grid and other web service environments.

Figure 6.6.1 Example of Trust Fabric

In federations such as caBIG®, trust is generally not black and white, as there are many identity providers and trust authorities, each of which
validates identities and information according to its own policies. A suitable trust framework should specify the criteria for evaluating authorities
against a set of polices. This allows the authorities to be grouped and expressed to services such that a service can decide whether or not to trust
a given authority based on the policies that the authority meets. The Level of Assurance (LOA) that a trust service can provide is used by the
consumers of assertions from these authorities to determine whether the service meets the consumers' requirements for level of trust.

1.
2.

3.

4.

5.

6.

7.
8.

consumers of assertions from these authorities to determine whether the service meets the consumers' requirements for level of trust.

From a federation perspective this is very important because using the LOA provides a basis for organizations to make a decision on whether or
not to trust an identity provider or other authorities from other domains and organizations. The framework works by evaluating these authorities
based on a set of criteria and by assigning them a level of assurance based on the criteria they meet.

Trust Service

In order to support the organization of trust authorities by level of assurance based on the polices the authorities meet, infrastructure is needed
that allows definition of the levels of assurance, and organization of authorities by the level of assurance that they comply with. In addition this
infrastructure must be able either to validate tokens for services based on their policies, or be to able to push out the set of authorities that
services should trust based on their policies, such that services may validate tokens.

To address this need we recommend creation and development of an Enterprise Trust Service with the following capabilities:

Specification of Levels of Assurance - The trust service should allow the definition and management of levels of assurance.
Attachment of policy to Levels of Assurance - A policy document should be able to be attached to levels of assurance managed by
the trust service, such that those consuming from levels of assurance can determine how to comply with the policies for the level of
assurance.
Management of Authorities - The trust services should support the management of issuing authorities. This includes issuers of
authentication tokens, authorization tokens, and other related tokens and credentials. Examples include but are not limited to certificate
authorities (public certificate) and Security Assertion Markup Language (SAML) authorities (public key or public certificate).
Mapping of Authorities to Level of Assurance - Authorities managed by the trust service must be able to be mapped to the Levels of
Assurance at which they comply with the policy.
Token Validation - Services operating in the federation should be able to send tokens and level of assurance requirements to the trust
service for validation. Based on the requesting service's level of assurance requirements and the policies for validating the token type
sent, the trust service should validate whether the token is valid. It is recommended that an industry standard service interface be chosen
for validating tokens; WS-TRUST is recommended, with the required bindings needed to support the services.
Authority Query - Federation participants should be able to query trusted authorities based on level of assurance, and be able to
download relevant information such that they can validate tokens issued by the authority.
Auditing - The trust service should keep auditing information for all transactions with the service.
Scalability - The trust service implementation should be scalable, federated, and easily able to be extended.

The consumers of the trust service, both servers and client, obtain trust root information from this service, and use that to determine
authentication and authorization of remote party. Such information should be configurable at a fine-grained level, including per interaction, service
or process.

Relationship to Authentication Model

The provide a common framework for evaluating identity providers and assigning them a Level ofFederal e-Authentication Guidelines (PDF)
Assurance. The guidelines define four Levels of Assurance for evaluating identity providers and assigning a Level of Assurance to them, based on
their identity vetting processes and strength of the credential.

The identity vetting criteria and credential strength requirements increase with each successively higher Level of Assurance. If one were to
evaluate identity providers based on a common set of guidelines such as the Federal e-Authentication Guidelines, then it would be very simple for
services to express which identity providers they trust. For example, in the case of the Federal e-Authentication Guidelines, a service's policy
could state that the service accepts credentials and tokens issued by identity providers that are certified at Level of Assurance 3 (LOA3) and Level
of Assurance 4 (LOA4).

Adopting the for evaluating identity providers is recommended. Assuming this recommendation is taken,Federal e-Authentication Guidelines (pdf)
each of the four levels of assurance defined by the e-Authentication Guidelines would be registered to the Trust Service. The Security Token
Service (STS) and the back end implementations that make up identity providers in the authentication model in section , would7.3 - Authentication
each be evaluated to determine what Level of Assurance they meet. Each STS would then be registered as an authority in the Trust Service and
associated with the Level of Assurance that the STS meets. Services consuming SAML tokens would either (1) delegate the validation of these
tokens to the Trust Service based on the Level of Assurance requirements, or (2) query the Trust Service for the authorities that meet the Level of
Assurance requirements and validate tokens received against the set of authorities returned by the Trust Service.

Relationship to Authorization Model

The authorization model involves trust of authorization authorities and attribute authorities. The trust framework should support virtual organization
(VO)-level policy on trusted authorization and attribute authorities, that can be used by services to determine validity and assurances based on
assertions from such authorities.

7.7 - Audit

7.7 - Audit

February 23, 2011 Working Draft

This section includes the following:

http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf

Audit Service Components
Audit Services for Healthcare

The Audit Service handles the recording and maintenance of service events from other services. It captures, into privileged audit logs, necessary
audit information to ascertain compliance with governing policies and procedures derived from agreements, internal policies of an organization,
and any applicable law or regulation. (Source: [International Security, Trust and Privacy Alliance: Privacy Management Reference Model Version
2.0, 2009 (istpa.org)|http://www.istpa.org/pdfs/ISTPAPrivacyManagementReferenceModelV2%200.pdf)

Privacy and security audit is a critical part of any healthcare information network. Audit record logs support the ability to investigate security
incidents, meet regulatory and other policy requirements, evaluate system performance, evaluate network performance, look for intrusion patterns
and help protect patient privacy or detect when patient privacy has been breached.

In order to support security and privacy requirements in the caGrid 2.0 environment, the Audit Service should provide functional capabilities that
include:

Capturing metadata for audit events
Monitoring audit event records (in real time)
Analyzing audit event records (stored)
Raising alarms when required about meaningful patterns of events
Configuration of the audit service to support policy enforcement
Archiving of audit event records
Reporting on audited events
Facilitating correlation of the audit trail across distributed applications

Audit Service Components

The following table identifies Audit Service Components.

Provided Interfaces Profiled Behavior Referenced Interfaces

Submit Audit Record
Submit Event
Query Audit Records
Retrieve Audit Records
Remove Audit Records
Retrieve Disclosure Records

Submit
Filter
Monitor
Analyze
Persist
Query
Retrieve
Archive
Report

Submit Audit Record
Submit Event
Query Audit Records
Retrieve Audit Records

Remove Audit Records

Submit Report
Get Consistent Time

From the viewpoint of the process or system that generates an audit-able event (the Audit Record Source), Submit Audit Record is the essential
Audit Service capability. It may be invoked by any Audit Event Source requiring audit services. That Audit Event Source only needs to capture the
audit event metadata, create a structured audit record and invoke Submit Audit Service. The invoked Audit Service instance will know what to do
with it. In addition to Submit Audit Record, the table above lists a set of provided and referenced (that is, required) interfaces. Also listed are
associated behaviors that can be used to define profiled audit service components. These components can, in turn, be orchestrated and
composed to realize complex audit service behavior.

Submit Audit Record can be realized as an explicitly invoked service interface or as an “event-triggered” service agent. This is a crucial point
since the “fire and forget” nature of Submit Audit Record allows the audit record source to capture and submit the audit record without any
knowledge of subsequent processing details. The audit record processing configuration is the responsibility of the Audit Service authority. Specific
profiled behaviors such as filtering, monitoring, analysis and persistence may also be exposed as a separate provided interface. For example, the
same behavior exposed through a Submit Audit Record interface, configured to provide audit record monitoring functionality, may be exposed
through a Monitor Audit Records interface.

The reference platform has many built-in services than can be used to realize profiled audit service behavior, including rules processing, complex
event processing and orchestration and composition. Figure 7.7.1 shows how profiled Audit Service components can use Submit Audit Record in
an orchestration that provides basic audit functionality. Submit Audit Record may provide a single audit record, or a set or stream of audit records.

Figure 7.7.1 Example Composition of Profiled Audit Service Components

Each of the three rounded rectangles in Figure 7.7.1 that are labeled Audit Service represent a profiled instance of the Audit Service. The
particular profile for an Audit Service instance is indicated by the profile name enclosed by guillemets (« »). Starting at the left of the diagram, one
or more audit records are submitted to an Audit Service instance with filter capabilities. Depending on the filter configuration, audit records may be

removed while the remaining audit records are submitted to the following Audit Service instance. This Audit Service instance has monitoring
capabilities that look for events or patterns of interest that would trigger a Submit Event notification message. The audit records are then
submitted to the last Audit Service instance that has repository capabilities in order to persist the audit records.

Audit Services for Healthcare

The Audit Service Model described above can process, but is not limited to processing, audit records structured to healthcare-specific standards
derived from the information model published in Request for Comment (RFC) 3881 and extended by Digital Imaging and Communications in
Medicine (DICOM) and the Integrating the Healthcare Enterprise® (IHE) Audit Trail and Node Authentication (ATNA) Profile. As part of the HL7
Service-Aware Interoperability Framework (SAIF) Alpha initiative, this base information model was further extended to support disclosure audit
and reporting requirements and to provide a platform independent model that could support multiple platform specific models. The Privacy,
Access and Security Services (PASS) Healthcare Audit Services, Release 1.0 specification will be on the September, 2010 HL7 Ballot. It includes
Computation-independent Model (CIM), Platform-independent Model (PIM) and Platform-specific Model (PSM) level specifications for the Submit
Audit Record, Retrieve Audit Record and Retrieve Disclosure Record service capabilities.

7.8 - Privacy

7.8 - Privacy

February 23, 2011 Working Draft

Realization of the caGrid 2.0 use case will normally require support for core privacy principles and fair information practices in order to meet the
business objectives of stakeholders, including regulatory compliance. At a conceptual level, these principles and practices include limitations on
the collection, use, and disclosure of patient information; provision for patient participation and control; security safeguards on data access,
integrity and quality; and accountability. These privacy principles are reflected in the Health Insurance Portability and Accountability Act (HIPAA)
privacy rule and Health Information Technology for Economic and Clinical Health Act (HITECH) meaningful use regulations.

In order to provide this privacy support, the security and privacy framework may be required to implement service capabilities that include:

An audit record information model that supports capture of disclosure-related audit data
Retrieval of disclosure-related audit records
Audit processing behavior supporting breach management
Assertion of identity proofing and assurance attributes sufficient to evaluate trustworthiness
Patient consent management
Privacy preference management
Identity resolution and trust management across identity providers
De-identification and re-identification
Pseudonymization and anonymization
Others

The section reflects requirements and models that can support privacy requirements for the healthcare environment.7 - Security for caGrid 2.0
However, implementations realizing those models will require more flexible and powerful means for policy decision enforcement than have been
provided by available commercial and open source Policy Enforcement Point (PEP) and Policy Decision Point (PDP) implementations that were
designed primarily for information technology security policy enforcement.

Enforcement of privacy policy at runtime is complex and tooling support for computable privacy policy formulation, provisioning, monitoring and
management across the privacy policy lifecycle is essential.

The reference platform provides powerful infrastructure service capabilities but adoption of standards specifications and development of reference
implementations for the privacy-related service capabilities listed above is necessary.

8 - Programming Model

8 - Programming Model

February 23, 2011 Working Draft

This section includes the following:

Introduction to Programming Model and Tools
Runtimes and Artifacts

Runtimes
Artifacts

Roles

A day in the life of a service developer
A day in the life of a service deployer
A day in the life of a site administrator
A day in the life of a service administrator
A day in the life of a service conformance verifier
A day in the life of a business process analyst
A day in the life of a service composer or orchestrator
A day in the life of an application developer
A day in the life of an application deployer
A day in the life of an application administrator
A day in the life of a site policy administrator
A day in the life of a High Performance Computing pipeline creator
A day in the life of an administrator of HPC services
A day in the life of a portal developer
A day in the life of a caGrid developer
A day in the life of a system integration developer
A day in the life of a citizen researcher

Introduction to Programming Model and Tools

A programming model is a concept used to discuss a unified view of the set of roles, concepts, patterns, best practices, runtimes, artifacts and
tools involved in the development of software products.

IBM suggests there is no single definition for the term programming model, although a programming model "defines the concepts and abstractions
that developers build and use." The IBM definition is then expanded to include a set of artifacts that programmers build and a set of roles for
members of the development and administrative community who have similar skills and knowledge.

The following sections call out artifacts and roles from representative use cases from the caBIG® community. The goal of this section is not to
prescribe technology choices but to discuss various patterns and their applicability in addressing the use cases in the caBIG® community.
"Programming model" describes a:

Set of artifacts created by the developers, primary and secondary consumers of the platform
Set of roles
Set of tools these roles use to either implement services or assemble services to create a solution

Runtimes and Artifacts

This section discusses how the various runtime technology choices made for the platform are manifested in the programming model. This is
where the important standards come in, as they dictate the artifacts. The following are some of the example runtimes and artifacts in the platform.

Runtimes

Application Server: Also referred to as a container, an application server is a piece of software where various services are deployed, and
policies with respect to security and other service level agreements are enforced.

Artifacts

Web Service Definition Language (WSDL): Description of Service Interface
XML Schema: Description of the structure of an XML Document
Web Services Business Process Execution Language (WS-BPEL): An OASIS standard executable language for specifying interactions
with web services
Business Process Modeling Notation (BPMN): A graphical representation for specifying business processes in business process
modeling
Web Services Choreography Description Language (WS-CDL): A language for describing how peer-to-peer participants collaborate

Roles

Each of the main roles associated with the programming model is described in the following sections, with the way the role is envisioned.

A day in the life of a service developer

A service developer is one who needs to expose some business logic as a service. The goal of a service developer is to construct a set of
software artifacts that implement a deployable service that provides a particular piece of functionality or makes a dataset available to the outside
world.

The developer will use the tools to discover an appropriate existing Enterprise Conformance and Compliance Framework (ECCF) service
specification. If such a specification exists the developer would import it into the development environment and implement the business logic. If an
appropriate ECCF service specification is not found then the developer uses tools that can create service specification artifacts to be compliant
with ECCF service specification requirements.

The developer would use tools to discover information, such as data models, appropriate for the service the developer is to use in creating

http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/index.html

appropriate service specification artifacts. If the service developer cannot find the appropriate data model, the developer would leverage tools that
would help create, define and publish the appropriate data model. The developer would also leverage tools that can help to develop the service
and enforce or comply with community-accepted best practices. These include encouraging separation of the business logic from other complex
and mundane but necessary tasks such as managing persistence.

The service developer will use tools to create metadata or discover and reuse service metadata. This metadata is published by the service to a
services and capability registry and would facilitate service discovery.

The service developer uses tools to verify service registration and the service discovery. Once the service developer creates the service, the
developer can leverage testing tools that can verify the conformance of the new service.

Note
1. The service developer also needs to configure policy (security and other components) if the security enforcement and
creation happens in the service code. If security is declarative (for example, a service developer creates a service without any
security), the service deployer can declaratively protect, secure and configure operations on the service during deployment.
2. There is a need to develop a "best-practices" document or at least initially talk about how various patterns are mapped to
appropriate tools and best practices, that is, how patterns map to various boxes from the architecture diagram from previous
sections.

A day in the life of a service deployer

A service deployer is one who takes functional service artifacts, and deploys them in an application container.

A service deployer takes a "deployable" service that the service developer has created, and deploys it with appropriate security and other policies.

The service deployer uses tools to configure security on the various security aspects of the service. The service deployer uses tools to verify that
the service has been registered to a service registry with appropriate metadata and can be discovered using the metadata.

The service developer can run a service compliance and conformance test suite to generate verifiable, re-creatable assertions regarding service
capabilities. The service deployer uses tools to deploy the service to a hosting service provided by the appropriate organization that is responsible
for the service creation, or deploys the service to a cloud-based provisioning mechanism.

A day in the life of a site administrator

A site administrator is one who is responsible for administering a set of applications and services according to appropriate service level
agreements.

A site is typically a cancer center or hospital that is part of the caBIG® virtual organization and is making a set of capabilities available for the
community. The site administrator uses tools to make sure the capabilities the site provides meet the site policies regarding security, service
availability and conformance. The site administrator works with the service administrator and site policy administrator to come up with a
deployment plan for a new capability and makes sure that it is enforced.

A day in the life of a service administrator

The service administrator is responsible for managing a service and a site administrator manages a set of services at a given participating site in
a way that is compliant with agreed-upon security policies, service availability policies, and conformance policies. The service administrator will
use tools provided by the platform to monitor the deployed services availability, usage and other aspects of the service. The service administrator
can subscribe to alerts generated by the monitoring infrastructure via various notification mechanism, and choose to act on the alerts based on
the service level agreement. The alerts should have enough information for the site administrator to diagnose the problem and decide course of
action.

A day in the life of a service conformance verifier

The conformance verifier verifies whether various artifacts that went into creating a service are in conformance with NCI ECCF guidelines. Tools
are used to verify computable semantic and syntactic interoperability. Test suites created by specification developers are used to validate
conformance.

A day in the life of a business process analyst

A business process analyst is one who serves as a bridge between secondary users such as science principal investigators (PIs) and primary
users of the platform.

A day in the life of a service composer or orchestrator

A service orchestration developer is one who is trying to achieve a particular scientific scenario by composing various services that are already
available.

A service composer works with the end user, such as the bioinformatician and scientist, and comes up with a high level business use case to
achieve a particular scientific purpose. The composer would create an artifact that describes in detail what is being built.

The composer would then use tools provided by the platform to discover existing services that need to be composed (orchestrated) and compose
them. The service composer uses the security tools provided by the platform to ensure appropriate security mechanisms are in place, if the
services discovered and needed for a business use case require the service composer to authenticate and be authorized to access and invoke
the services. Once this is achieved, the service composer gets a validation from the end user as to whether the service met the purpose. The
service composer then uses tools to make this composition available as a service with appropriate policies for others in the community to
discover, reuse, and modify.

Note to authors
This needs to be revisited with more clarity on various tooling that needs to be in place. How much detail so we want to go into
here?

A day in the life of an application developer

An application developer is one who is developing software with targeted functionality and solving one or more use cases.

An application developer creates an application that provides functionality to solve a high level business use case. Examples include caTissue,
caArray, and the caBIG® Clinical Information Suite. Developers working on integrating caBIG® applications with other applications also fall under
this category. An application developer applies principles of service orientation to create highly-reusable components for solving common
business problems. These components include APIs, services and application modules.

Application developers use tools to discover various services that could be reused to create part of the application logic. Once the services are
discovered, developers use workflow creation tools to create compositions of these services that would provide a particular set of functionality. An
application developer also leverages service development and deployment tools to create new services for the application and deploy them on a
provisioning mechanism. On a typical day an application developer uses tools to discover various capabilities, to compose these capabilities as a
new capability, and to make this capability available as a service.

A day in the life of an application deployer

An application deployer is one who takes a collection of services responsible for a particular business capability deployed and makes it available
for consumers of the application.

An application deployer takes a "deployable" application, such as composition of a set of services, the application developer has created and
deploys it with appropriate security and other policies. The application deployer uses tools to configure security on the various aspects of the
application and to verify that the application has been registered to the centralized registry with proper metadata and can be discovered using the
metadata. The application developer runs the appropriate compliance and conformance test suite to generate verifiable, recreatable assertions
regarding the application capabilities. The application deployer uses tools to deploy the service to a hosting service provided by the appropriate
organization that is responsible for creating the application, or to deploy the application to a cloud-based provisioning mechanism.

A day in the life of an application administrator

An application administrator is one who makes sure the deployed applications comply with and conform to appropriate policy and conformance
frameworks.

The application administrator is responsible for managing an application at a participating site in a way that is compliant with agreed upon security
policies, service availability policies, and conformance policies. The service administrator will use tools provided by the platform to monitor
availability, usage and other attributes of deployed services. The site administrator can subscribe to alerts generated by the monitoring
infrastructure via various notification mechanisms and choose to act on the alerts based on the service level agreement. The alerts should have
enough information in them for the site administrator to diagnose the problem and decide a course of action.

A day in the life of a site policy administrator

A site policy administrator is one who ensures that services available at a site are compliant with agreed-upon policies for access and other
aspects addressed by policies.

The site policy administrator's job is to devise policies that dictate how a particular deployed capability is made available to stakeholders. These
policies include but are not limited to security policies and service level agreements with respect to availability. The site policy administrator uses
the tools made available by the platform to create enforceable policies and also check that deployed capabilities adhere to set policies. The policy
administrator uses tools to make any needed changes to policy.

A day in the life of a High Performance Computing pipeline creator

A high performance computing (HPC) pipeline creator uses tools to create analytical pipelines (for example, Nextgen Genome sequencing) that
require leveraging commodity computing capabilities (for example, cloud computing). The HPC pipeline creator works with the end user to
understand the computing and data transfer requirements in order to decide whether data is moved to computation capability or the other way
around. The HPC pipeline creator would then use platform tools to create these piplelines, execute them and make the results available for the
end user. The pipeline creator would then make the pipeline available for others, who might reuse the pipeline or build additional functionality on
top of the pipeline.

A day in the life of an administrator of HPC services

The HPC systems administrator makes sure the computing and data capabilities are secure and conform with agreed-upon policies with respect
to service availability, available capacity and related metrics, in order to provide right level of access to end users. The HPC systems administrator
would use tools to monitor current state and use tools to provision capabilities on demand for users and applications.

A day in the life of a portal developer

A portal developer makes a certain set of capabilities available in the form of a web application. A portal developer would leverage tools from the
caGrid 2.0 platform to provide common capabilities like authentication, authorization, and service orchestration if needed. The portal developer
would develop appropriate artifacts (for example HTML and CSS) that would make the portal available for the end users.

A day in the life of a caGrid developer

A caGrid developer is one who authors code and services to provide infrastructure capabilities.

A day in the life of a system integration developer

A system integration developer works on integrating existing systems with the caGrid 2.0 platform.

A day in the life of a citizen researcher

An example of a citizen researcher is an informed, engaged citizen who takes a proactive role in understanding and using tools such as 23andme,
Google Health, and Keas to help understand how new clinical research can be leveraged. It is not fully understood at this time this will impact
caGrid 2.0, but it is useful to call it out.

9 - Tool Categories

9 - Tool Categories

February 23, 2011 Working Draft

This section describes various tools from the standpoint of capabilities needed by various users of the caGrid 2.0 platform.

Note
Tools depend strongly on the roadmap view of the platform architecture, security model, programming model, and semantic
infrastructure definition. Details about tool categories will be added in as caGrid 2.0 Roadmap definition progresses.

This section includes the following:

Service Creation
Enterprise Conformance and Compliance Framework (ECCF) Support
Data Model

Conformance Testing
Discover and Reuse
Deployment and Service Configuration and Management

Configuration and Policy
Deployment in the Cloud and Other

Deployment Testing and Service Diagnostics
Monitoring
Security, Policy, and Rules Management

Policy and Rule Creation and Management
Scenario Testing
User Management Tools

Workflow
Authoring Choreography and Orchestration
Monitoring and Management

High Performance Computing and Data Transfer Tools
Discovery of available computing capabilities

Data Discovery
High Performance Computing Monitoring, Reporting, and Management

Application Development

Service Creation

Service creation tools provide utilities for platform and service developers to construct a tangible set of software artifacts that implement a
deployable service or stub of that service. The software artifacts are created following the guidelines and specifications of the programming
model.

Enterprise Conformance and Compliance Framework (ECCF) Support

These are tools that allow consumption of an existing ECCF service specification in implementing the service. Also included are tools that
facilitate creation of specifications when a new service is implemented. The objective of the tools is to allow developers to focus on the business
logic when creating services. For new services, the tools can fill in template specification documents using static information such as data model,
and support developers in documenting business logic implemented in the code.

Data Model

These tools are used to discover information models known to the environment the developer is working in, or to create new information models.
The following functions are included:

Consume information that is available: download client and utility APIs, read specifications of services, discover information models, put
in concepts and find standards, and other related functions
May provide tooling to create and publish the data model
Can also potentially combine with ECCF

Note
A potential way to further subcategorize is to use Thomas Erl's model, which separates out the business logic layer and
persistence layer.

Conformance Testing

ECCF generates the artifacts a service is using, but requires services to be tested against conformance statements. Therefore a test suite is
needed while the service is being created. This helps determine what is missing. The following functions are included:

Development environment checks code against assertions
Certify conformance at the end of testing

Discover and Reuse

It is necessary to discover the information model and data representation used on the wire. This includes:

Policy
Metadata
Behavioral Contracts
ECCF Artifacts
Application programming interface (API)

Deployment and Service Configuration and Management

Configuration and Policy

These tools are used to facilitate deployment-time configuration of the service. Policies govern that particular deployment. Security policies are
included.

Deployment in the Cloud and Other

These tools are used to facilitate deployment of a service to the local and potentially remote platform installation. This includes the ability to
deploy dynamically to cloud environments.

Deployment Testing and Service Diagnostics

These tools are used to validate that a service instance has been deployed correctly and is behaving as expected with the instance-specific
deployment configuration, based on the service specification of behavioral and other contracts.

Monitoring

These tools are used to monitor the status and provide summary reporting of a service, a group of services, or an ecosystem, including uptime,
usage, and other metrics.

Security, Policy, and Rules Management

Policy and Rule Creation and Management

These are tools with user interfaces for supporting the authoring and management of policies, including security policies, and rules that govern the
security behavior of a service, a platform installation, or a virtual and real organization.

Scenario Testing

These tools evaluate validity of a security assertion based on available security policies and rules. For example, these tools can evaluate whether
a user has the expected access rights to a service, or there are conflicting policies in the environment.

User Management Tools

These tools support management of user accounts, groups, roles, and attributes.

Included are authorization tools, at the Instance and Attribute Level, for authoring and testing security policies relevant to data instance or data
attribute level authorization. Specifically the tools must support inspection of the data resource to be protected, so that attributes and their values
can be named in the authorization policies.

Workflow

This is a set of tools to orchestrate and choreograph a set of capabilities in various patterns to create a higher-order capability.

Authoring Choreography and Orchestration

This tooling is infrastructure to facilitate creating the workflow, potentially in a more declarative manner to specify the of the workflow rathergoal
than the of the workflow."how"

Included are reasoning-based authoring tools to facilitate intelligent suggestion of next step services in workflow, using semantic infrastructure.

Monitoring and Management

These tools report status of the workflow, and manage the execution of the workflow, including but not limited to supporting termination, pause,
and restart.

High Performance Computing and Data Transfer Tools

This is a set of tools that facilitate creation of high performance computing pipelines and high performance and reliable data transfer.

Discovery of available computing capabilities

These tools would help end user applications discover capabilities available on the platform.

Data Discovery

These tools provide functions including but not limited to location of data; summary information about the data, including availability and statistics;
and provenance of the data, such as source and transformations performed.

High Performance Computing Monitoring, Reporting, and Management

These tools would allow site administrators, service administrators and other stakeholders to monitor, generate reports on usage. and perform
administrative functions on the Grid.

Application Development

These tools include language binding tools to support reuse of services in applications or other services written in programming languages other
than the one the platform was written in, for example, PERL, .NET, and Objective C bindings.

10 - Gap Analysis - caGrid 1.x versus caGrid 2.0

10 - Gap Analysis - caGrid 1.x versus caGrid 2.0

February 23, 2011 Working Draft

This section contains:

10.1 - Introduction to Gap Analysis - caGrid 1.x versus caGrid 2.0
10.2 - Gap Analysis - caGrid 1.x vs. 2.0 Fulfillment of Requirements
10.3 - Next Steps - Risk Mitigation
10.4 - CBIIT Project Recommendations
10.5 - caGrid 1.x Legacy Compatibility
10.6 - Pre-caGrid 2.0 Interim Development

10.1 - Introduction to Gap Analysis - caGrid 1.x versus caGrid 2.0

10.1 - Introduction to Gap Analysis - caGrid 1.x versus caGrid 2.0

February 23, 2011 Working Draft

The caGrid 2.0 Roadmap is being developed to address needs of the community of stakeholders, especially as compared to how those needs are
met by caGrid 1.x. The gap analysis begins with vignettes of some of the issues in using the caGrid 1.x infrastructure and the current semantic
infrastructure. The full vignettes and a draft gap analysis are available at the .BIG Health Enterprise Architecture Specification (BIG HEAS) Wiki

Currently, developers have to meet certain basic requirements in order to deploy a "semantically annotated" Grid service:

Concepts representing the domain must exist in a terminology server (EVS).
Common Data Elements (ISO 11179), which use those concepts and controlled vocabulary along with other information, must exist for
every class and attribute to be used in the object model.
An object model that has every class and attribute annotated with CDEs must exist and represent the data types to be used.
A schema must be generated that reflects how the object model will actually look when serialized to XML.
The annotated object model must be submitted to NCI CBIIT for review and acceptance.
The annotated model must have a corresponding physical data model that describes exactly which class and attributes go into which
tables and rows.
Once the model is approved, the caCORE and caGrid development tools can be used to create and expose the Grid service.

Following is a detailed review of how each of the required steps in the process can currently be realized.

Concepts representing the domain must exist in the terminology server (Enterprise Vocabulary Services, EVS)

Generally concepts are vetted through a standards organization in charge of a particular terminology such as SNOMED (Systematized
Nomenclature of Medicine). However, nothing prevents the current CBIIT system, LexEVS, from being used in a more agile way except
processes and policies. LexEVS is capable of having terminologies vetted by experts and used immediately.

Common Data Elements, which use those concepts and controlled vocabulary along with other information, must exist
for every class and attribute to be used in the object model

If the user does not have a domain model that can use existing CDEs for every attribute and class, the user must rely on the UML Model Loader
and the CBIIT support team to have the CDEs generated and properly populated for each of the user's models. This puts an outside organization
in the loop of the development cycle and prevents rapid prototyping and utilization of caGrid Data Service Infrastructure until this process has
been completed. A more agile system is desirable, one in which CDEs can be rapidly created and used. It is also desirable to have tools that can
be used to gradually re-annotate the model over time as the knowledge is further curated or harmonized, without having to recreate or redo any of
the pre- or post- steps.

An object model that has every class and attribute annotated with CDEs must exist which represents the data types to
be used

There are two supported tools for creating UML models that can then be annotated by the only currently available annotation tool, the Semantic
Integration Workbench (SIW). One of these tools, Enterprise Architect, is not free, and the other, ArgoUML, is still very immature and tends to not
be completely reliable. Assuming the user draws up the object model for the domain using Enterprise Architect, the user then needs to export that
model as an XMI file and annotate it with the SIW. If the model is not exported in exactly the way expected by the SIW, that tool will not be able to
read in, or work with, the model. After successful export from EA, SIW may be used to choose CDEs or EVS concepts to annotate the data
model. It may be necessary to repeat this process many times to get it right.

A schema must be generated that reflects how the object model will actually look when serialized to XML in the caGrid
platform

After completing the annotation, the user must generate schema for the domain model. The user can have EA generate the schema. However,

https://wiki.nci.nih.gov/x/tSdLAQ

these schema are generally not very well formed and have a tendency to not be as expected, and to be difficult for humans to understand. The
user can also generate the schema with the caCORE SDK. Optimally the model will be annotated properly with schema information so that when
it is consumed into the caDSR the proper UMLClass -> QName and UMLAttribute -> QName maps are already created. However, at this point the
user does not know if the model is good enough to be approved and may have to repeat the caCORE process.

A tool is desirable that supersedes the SIW and can perform modeling, annotation, and schema generation all in one process. Sometime before
the last step the user must submit a schema to the Global Model Exchange (GME) and make sure the caDSR UML classes and attributes are
annotated with the GME QName (qualified name) maps that are required to map from a logical, semantically annotated domain model to the
syntax of the wire protocol.

The annotated object model must be submitted to NCI CBIIT for review and acceptance

The reviewers at NCI have a tool that the model creators must use to submit their model for review and approval called the Compatibility Review
System (CRS). This system enables the user to go through the process of getting a model approved and walks a development team through the
caBIG® compatibility process. The user submits the model, gets feedback, and if the model is not ready to be approved, goes back to the first
step and finally comes back to this step. The model may eventually be approved, after 1-N more iterations.

The annotated model must have a corresponding physical data model that describes exactly which class and attributes
go into which tables and rows

The user now has a domain model that has been accepted into caDSR and is fully annotated. The user now wants to create a backend system
that can store data representing the domain model that was generated. The user now must open the model back up in EA and add a physical
data model that represents the database structure to be used to store the domain objects.

Optimally this should be required only when using an existing database. For a new database, caCORE SDK need not require the user to tell it
what the database should look like, as caCORE SDK uses a system that can do that, Hibernate. The system designer must be a database expert,
because using an object relational mapping (ORM) system such as Hibernate makes it unnecessary to know anything about the structure of the
database, except that the objects being used can be persisted to and retrieved from this system.

It is now necessary to go back into EA and generate a data model in just the right way with just the right tags on each class and attribute to map
from the logical to the data model so that the caCORE system can use it to generate a Hibernate back end.

Once the backend system is generated using the caCORE SDK, which will also generate schema for the domain model, the user can submit the
schema to the GME.

If the user wants to update the annotated model in the caDSR with the new GME QName maps, SIW must be used.

Once the model is approved the caCORE and caGrid development tools can be used to create and expose the grid
service

Once the model is approved, uploaded, and then updated with schema information, and the caCORE SDK has run successfully to generate the
data service backend, the user can create the Grid data service using the wizards and tooling available through caGrid. This proceeds relatively
smoothly, assuming all of the above was done correctly.

Using Introduce with the data service wizard will do all the complicated work, but the user must choose to create a data service that was
generated from a caCORE SDK system or write a CQL Query Processor in order to adapt to another style of data backend. This is necessary for
a backend such as a vendor-based laboratory information management (LIMS) system or other open source data capturing systems like
Research Electronic Data Capture (RedCAP) or Informatics for Integrating Biology and the Bedside (I2B2).

The user must also provide services metadata to deploy the service so it can be registered and discovered properly on the Grid. This success of
this process depends on the success of all of the above steps.

Gaps and hurdles in the current process compared to BIG HEAS-compliant Computable Semantic Interoperability (CSI)

After following the process steps defined above, using the currently available tools and interacting with the people in the required roles to obtain
compatibility guideline-directed approval of the newly created design model, a development team is able to deploy a Grid service supporting
discovery of and access to the identified data elements.

Each of the above steps – which were greatly simplified for discussion purposes – are tightly coupled to specific tools and technologies, making
the entire process cumbersome, opaque, non-scalable, and technology and platform-specific. In addition, the approach is fundamentally
application- rather then service-specific from a design perspective. Finally, the roles and policies that stand between a project and its ability to
stand up a data service have proven to be barriers to cost-effective utilization of the process. Therefore the process is self-limiting, particularly in
the research environment, where the operative mode of "question, test, review, and modify to question again" is time-sensitive.

In the context of a BIG HEAS-compliant service specification, the following is a list of facts that will slow a project down during the quest to deploy
a semantically-anchored, service-oriented approach to sharing scientific data and interoperability.

The team must have a caCORE system in order to take advantage of the data services toolkit. A development team can use something
else, but will have to implement its own CQL query processor, which is not an easy task. This means that to create caGrid Data Services,
using caCORE tools is the only efficient approach.
In order to run the caCORE SDK, the team must have a UML model that the caCORE SDK can understand. Further, that model must
have a logical model and data model in it. This means even if the team has no database or data to start with, the team must still create
the database schema for this "object oriented" view. caAdapter, another tool, can help map from the logical to data model view; however

this is an additional step and another tool to learn.
In order to generate the UML model, the team must use EA because Argo UML, although free, is too immature to rely on. This means the
team must pay for the modeling software.
In order to annotate the UML model, the must use the SIW as there is no other tool. This tool however, can only use the NCI caDSR and
EVS. So if the team is trying to use its own instances of knowledge management tools, in its institution or cooperative group, the team
must create its own solution.
There is no way to link a registered model to a runtime schema representation. This directly impedes predicable Computable Semantic
Interoperability. If the infrastructure truly depended on the semantics expressed by ISO 11179-compliant metadata environment, the
registration processes would need to define both the data semantics and their representation on the wire. This could be by binding of the
data element to a data type standard such as ISO 21090. At present, only a conceptual-level representation is defined and stored in
caDSR with multiple run-time-accessible maps via QNames in the GME.

The above analysis illustrates the current limitations, challenges, and roadblocks that are faced by software developers within CBIIT as well as
those attempting to develop new software components or to connect existing components to the caBIG® environment, and indicates that simple
evolution from the current Grid-based infrastructure to a BIG HEAS infrastructure will most likely not occur in a step-wise fashion.

10.2 - Gap Analysis - caGrid 1.x vs. 2.0 Fulfillment of Requirements

10.2 - Gap Analysis - caGrid 1.x vs. 2.0 Fulfillment of Requirements

February 23, 2011 Working Draft

Note
This gap analysis primarily focuses on caGrid 1.x's ability to fulfill certain performance and quality requirements (refer to section

). It should not be viewed as a comprehensive gap analysis.5 - caGrid 2.0 Requirements

caGrid 1.x generally fulfills the requirements analyzed well, with exceptions in the following areas:

Standards Compliance
Flexibility in Access
Reduced Learning Curve
Configurability
Portable and Replaceable Components

Use of CBIIT Enterprise Conformance and Compliance Framework (ECCF)
Signatures and Records
Auditing and Reporting
Transactional Integrity
Diagnostics
Fault-tolerance
Recovery
Concurrent Users
Response Time and Latency
Parallel Processing
Scalability

Standards Compliance

caGrid 1.x is based on open standards (Web Services (WS-*) and Web Services Resource Framework (WSRF)). However in some cases older
versions of those standards are used which hampers interoperability with more modern systems.

Flexibility in Access

caGrid 1.x services generally can only be accessed via a Simple Object Access Protocol (SOAP) web service call in a point-to-point
communication system. Some services (Federated Query Processor (FQP), Dorian, Global Model Exchange (GME)) have internal application
programming interfaces (APIs) around which the grid service provides a facade, however this is the exception rather than the rule.

Reduced Learning Curve

While simply using a caGrid 1.x client API is not overly difficult, understanding how the services fit together to make a cohesive grid system
requires extensive background knowledge. Writing caGrid 1.x services is simplified by the use of the Introduce toolkit; however user experience
has shown that many difficulties still remain for usage that is not provided out-of-the-box.

Configurability

caGrid 1.x provides minimal configurability in the form of "target grids," which inform the deployed services and clients as to the endpoints of core
grid services.

Portable and Replaceable Components

The core components of caGrid 1.x are heavily reliant on one another and expose APIs which bind them together in specific ways which are not
always apparent or easily reproducible in other software components.

Use of CBIIT Enterprise Conformance and Compliance Framework (ECCF)

Since caGrid 1.x predates CBIIT adoption of ECCF, caGrid 1.x generally does not make use of ECCF. Some newly developed services within
caGrid 1.x do, however make use of ECCF, so its exclusion from the 1.x platform is not necessarily an inherent gap.

Signatures and Records

To be provided.

Auditing and Reporting

Very little auditing and record keeping is done in caGrid 1.x services. Further, existing auditing and reporting is not uniform or centrally managed,
stored, and configured.

Transactional Integrity

Transactional integrity is rather ad hoc. WSRF provides some level of transaction capability; however it is up to the service developer to ensure
that it is correctly utilized.

Diagnostics

Rudimentary diagnostics exist for caGrid 1.x, mostly provided by external tools.

Fault-tolerance

Most caGrid 1.x services do not react favorably to fault conditions. Some services have to be built to detect such conditions and return reasonable
results (that is, FQP with partial results).

Recovery

The ability to resume processing once an error has been corrected is not inherent in the caGrid 1.x platform.

Concurrent Users

Since logging which would enable capturing this sort of metric is absent in caGrid 1.x, it is difficult to quantify how well it handles multiple
concurrent users.

Response Time and Latency

"Acceptable response time" is a somewhat arbitrary metric. caGrid 1.x can experience long delays in returning very large data sets due to
inefficiencies in the underlying XML serialization and deserialization framework, which may be mitigated through the use of appropriate
technologies such as WS-Enumeration.

Parallel Processing

As caGrid 1.x is built on WSRF, load balancing becomes problematic for calls which create or manipulate resources. Depending on the design of
the system, the caGrid 1.x service could serve as a thin front-end to a parallel processing environment. Some questions about separation of
concerns in software design need to be addressed here for caGrid 2.0 as well.

Scalability

According to the caBIG® Clinical Information Suite definition of scalability, caGrid 1.x does not scale well.

10.3 - Next Steps - Risk Mitigation

10.3 - Next Steps - Risk Mitigation

February 23, 2011 Working Draft

The next steps of the caGrid 2.0 Roadmap team, through approximately February 2011, are focused on . The caGrid 2.0 Roadmapmitigating risk
team wishes to test some of the concepts outlined in previous sections, in an effort to validate what we have outlined.

The major source of risk is inadequate analysis and incorporation of needs from stakeholders and requirements from parallel projects. Therefore,
many of the risk mitigation actions focus on further research, possibly including specification and prototyping activities, and possibly including
other teams, for specific capabilities and services.

The following table describes risks that have been identified.

Number Risk Description Likelihood Risk Type Mitigation Plan

1 caGrid 2.0 does not provide
necessary capabilities to address
use cases and requirements.

Moderate Q (Requirements) "Necessary capabilities" focuses on satisfying
specific known requirements from known use cases.
The mitigation plan includes comprehensive use
case gathering, effective requirements analysis,
design and implementation plan to focus on
requirements, and conformance and compliance
testing to ensure requirements are met.

1.1 caGrid 2.0 does not provide
sufficient capabilities to address use
cases and requirements.

Moderate Q (Requirements) "Sufficient capabilities" focuses on the complete set
of capabilities to enable each use case. Necessary
capabilities form a subset, or potentially an identical
set, of the sufficient capabilities. The mitigation plan
includes engaging stakeholders early and
frequently, gathering more use cases,
comprehensive requirements analysis and
prototyping use case implementations to test for
unforeseen requirements.

2 caGrid 2.0 does not address all
stakeholder concerns.

High S
(Social/Political/Cultural)

Author 7+/- 2 "profiles" from the stakeholder list, to
make sure the team and audience understand the
effort involved in some detail and to show where
pain points will be: for example, might highlight
tooling points, or decision points for decisions
developers can make.

3 caGrid 2.0 runtime service registry
does not address all requirements,
especially interaction requirements
with Semantic Infrastructure
Enterprise Conformance and
Compliance registry.

High Q (Requirements) The mitigation plan includes determining discovery
capabilities, runtime service registry requirements,
descriptions, and specifications. The team needs
this and Semantic Infrastructure will need acess, so
this might be a good place to research and list
requirements and start specifying based on
Semantic Infrastructure and other use cases.

4 caGrid 2.0 service orchestration,
choreography and workflow do not
address key use cases, that is, in the
caBIG® Clinical Information Suite.

High Q (requirements) The mitigation plan includes work with the caBIG®
Clinical Information Suite team on use cases,
requirements and capabilities to specify or prototype
or both, service orchestration and choreography.

5 caGrid 2.0 security services do not
satisfy caBIG® Clinical Information
Suite use cases and requirements.

High Q (Requirements) Security services might be a good place to interact
with the caBIG® Clinical Information Suite Project
team, for example, in specifying security services.

6 caGrid 2.0 security services do not
satisfy caBIG® Clinical Information
Suite use cases and requirements.

High Q (Requirements) This refers to delegation, support for rights assertion
based delegation, and integration with the Security
Assertion Markup Language (SAML) Holder of Key
Authentication.

7 caGrid 2.0 security services do not
satisfy caBIG® Clinical Information
Suite use cases and requirements.

High Q (Requirements) This refers to the Security Token Service, for
example, the WS-Trust interface and plain HTTP
interface for Representational State Transfer
(REST) service.

8 caGrid 2.0 security services do not
satisfy caBIG® Clinical Information
Suite use cases and requirements.

High Q (Requirements) The refers to authentication using SAML for REST
services and communication of tokens for REST
service.

9 caGrid 2.0 security services do not
satisfy caBIG® Clinical Information
Suite use cases and requirements.

High Q (Requirements) This refers to authentication support for a web
application, and web portal interaction with REST
and Simple Object Access Protocol (SOAP) services
using delegation.

10 caGrid 2.0 security services do not
satisfy caBIG® Clinical Information
Suite use cases and requirements .

High Q (Requirements) This refers to SAML support in Web Service
Development Kit.

11 caGrid 2.0 security services do not
satisfy caBIG® Clinical Information
Suite use cases and requirements.

High Q (Requirements) This refers to securing services with eXtensible
Access Control Markup Language (XACML).

12 Non functional requirements are not
satisfied by caGrid 2.0.

High Q (Requirements) Gather more use cases and requirements and
provide more analysis to be sure caGrid 2.0 is
satisfying most non-functional requirements, for
example, performance.

13 Services deployed with caGrid 2.0
capabilities will not be able to easily
interoperate with services on other
platform.

High ? Work with the caBIG® Clinical Information Suite
team and Tolven team on a few services to see
what it will take to interoperate between caGird 2.0
and the Tolven platform.

14 The various models for deploying a
service that can use caGrid 2.0
capabilities and tools are not known.

 Explore deployment models to cover various ways
software is made available to users, for example,
download, as service hosted elsewhere, including in
the cloud.

15 Tools are needed to perform high
performance computing and data
transfer.

High Q (requirements) Explore techniques like MapReduce and high
performance data transfer technologies to create
high throughput pipelines for next generation
sequencing and other use cases.

16 Migration of applications and
services from caGrid 1.x to caGrid
2.0 may not be clear to service
developers.

High Q (requirements) Explore different scenarios with different
applications, for example, facade.

The following projects are continuing to address risk.

Continued Roadmap authoring effort: gather community input and address community input through additions and changes to the
roadmap document. This addresses all risks above.
Interim Platform Development and Specification: write a "playbook" for developers to follow when considering deploying applications or
services to caGrid 2.0. This section is drafted as section now, and will be developed further over10.5 - caGrid 1.x Legacy Compatibility
the months with feedback from the caBIG® Clinical Information Suite team and others. This addresses risks 14 and 16 above.
Security: the caGrid 2.0 team will work with the caBIG® Clinical Information Suite team and possibly another adopter to test the security
standards outlined in the security section. This addresses risks 5-11 and 13 above.
Service and application composition: the caGrid 2.0 team will work closely with the Semantic Infrastructure 2.0 team to prototype service
compositions (workflows) from the Life Sciences, from the caBIG® Clinical Information Suite team and from a translational medicine use
case. The joint caGrid 2.0 team and Semantic Infrastructure 2.0 team will work with caBIG® Domain Workspace and the caBIG® Clinical
Information Suite team to identify use cases and requirements. This effort will lead to prototyping of a few semantic workflows. This effort
will also inform, validate and consume from the Service-Aware Interoperability Framework Implementation Guide (SAIF IG), especially
the Behavioral Framework section. The team expects to test World Wide Web Consortium (W3C) technologies in this activity. This
addresses risks 1-4 above.

10.4 - CBIIT Project Recommendations

10.4 - CBIIT Project Recommendations

February 23, 2011 Working Draft

This section addresses the following.

Platform
Infrastructure Services

Artifact Repository
Metadata Repository
Security

Security Token Service (STS) and Identity Provider
Trust Service including Security Token Service
Group Management Service
Delegation Service

Workflow
Definition of Workflow, Orchestration and Choreography
Current and Investigated Approaches to Workflow
Considerations in Creating Tools to Enable Workflow

Globally Unique Identifiers

Federated Query Processing
Tools

Service Development Integrated Development Environment (IDE)
Service Configuration and Administration Tools
Security Administration Tools
Site Administration Tools
Workflow Tools
Testing and Monitoring Tools
Portal Technologies

Project Implementation

Platform

The core platform has no real current analogy in caGrid 1.x, in which services are developed on Globus/Axis and the complete collection of
components are deployed as a web application to a web application container. There are numerous free and open source commodity platforms
which can act as the basis for the platform described in section . This project is to select one, and determine the best6 - caGrid 2.0 Architecture
practices and methodologies for adding the additional needed capabilities to it.

Considerations include the following.

Service Development Framework
The platform should support SOAP and REST service development by way of, respectively, JAX-WS (Java API for XML Web
Services) and JAX-RS (Java API for RESTful Web Services)-based service definitions

Web Single Sign On Framework
The platform, by way of the security services described below, should provide support for web application authentication to be
shared across multiple applications, and leveraged for secure service invocation (that is, the logged-in user's grid credentials
should be able to be used for authentication to services the application accesses on the user's behalf)

OSGi-based development
The platform should provide an OSGi container for isolating and managing "on bus" services and components
Notification Service

Mediation Services (in support of runtime governance and its security policy subset)
Policy Enforcement (including considerations such as Meaningful Use and caGrid policy)
Policy Decision (support for combining of policies from multiple sources)
Policy Information
Monitoring (including considerations such as Meaningful Use and caGrid policy)
Proxy and Facade support for accessing remote services
Mapping, Translation, and Transformation (including considerations such as security policy resolution and resource semantic
reconciliation)
Event processing and notification
Common Auditing throughout the platform's components

Administrative tools and features
The platform must provide administrative tools and features for service deployment, lifecycle management, and monitoring

Discovery
The platform must provide APIs and policy points for "on bus" components and services to discover and interact with other
installed services and components (for example, OSGi service registry and Java Business Integration (JBI) routes)

Transport layer requirements
The platform must provide all transport layer requirements presented by the security infrastructure (for example, support for
HTTPs), including support for encryption, signature, and non-repudiation.

The Enterprise Service Bus (ESB) is considered in section . This section refers to a Business6.5 - CBIIT Adopt or Build Tools Recommendations
Process Management (BPM) system that will be needed to interact with an Enterprise Service Bus (ESB). caGrid 1.x has no Business Process
Management system, so these elements will all have to be adopted, adapted or built.

Part of the Business Process Management system might include an Enterprise Decision Management system, which includes both a repository
for business rules (sometimes called a business rule management system) and a business rule processing engine. It is anticipated that the
repository for business rules would be part of the . The business rule processing engine would need to interact with theSemantic Infrastructure 2.0
business rules repository. Section mentions the possibility of adopting or adapting Drools, the6.5 - CBIIT Adopt or Build Tools Recommendations
JBoss Business Logic Integration Platform described on the , as the Business Process Management system.JBoss website

Infrastructure Services

Artifact Repository

The artifacts in development are described by the .Semantic Infrastructure 2.0 Roadmap

Metadata Repository

The metadata repository recommendations are described by the . Considerations include:Semantic Infrastructure 2.0 Roadmap

Registration
Discovery
Vocabulary
Identifiers

https://wiki.nci.nih.gov/x/AgvDAQ
http://jboss.org
https://wiki.nci.nih.gov/x/AgvDAQ
https://wiki.nci.nih.gov/x/AgvDAQ

Identifier Resolution

Security

Security Token Service (STS) and Identity Provider

A WS-Trust compliant STS will need to be developed for SOAP services.
A RESTful STS will need to be developed to support the REST programming model.
The service will need to issue user and host certificates. Pieces of the current Dorian code base could be leveraged for this.
The service will need to be issue Security Assertion Markup Language (SAML) 2.0 assertions.
The service should be extensible such that it can interact with any user management system.
The service will need to be able to integrate with an existing user management system such as Lightweight Directory Access Protocol
(LDAP).

The service should support a login mechanism.
The service should support functions including but not limited to user registration and updates.

The service should provide a default implementation for user management.
The service should provide auditing and logging for all interactions.
The service should provide a full client API and management user interface.

Trust Service including Security Token Service

The service should be modeled similarly to the caGrid 1.x current Grid Trust Service.
The service should extend or replace the caGrid 1.x trust model to support other trust roots in addition to X.509 certificates.
The levels of assurance(s) model provided in caGrid 1.x can continue to be used, though it should be expanded to have the capability of
storing policy documents and additional metadata with each level of assurance.
The service should provide a Web Service interface (Simple Object Access Protocol (SOAP) or Representational State Transfer (REST))
for managing trust roots and levels of assurance.
The service should provide auditing and logging for all interactions.
Similar tooling to caGrid 1.x SyncGTS will be need to synchronize trusted authorities with local service environments.
The service should provide a WS-Trust STS validation service implementation.
The service should provide full client API and management user interface.

Group Management Service

The existing Grid Grouper/Grouper code base could be leveraged to provide the foundation for this service.
The service must provide hierarchical group management.
The service must provide access control on hierarchies, sub hierarchies, and groups.
The service should provide a web service interface (SOAP or REST).
The service should provide auditing and logging for all interactions.
The service should provide full client API and management user interface.

Delegation Service

Existing code base can be leveraged for delegating X.509 credentials.
The service should support multiple token types, such as X.509 and Security Assertion Markup Language (SAML).
The service should provide a method of defining and enforcing delegation policies. The caGrid 1.X code base support this.
The service should support rights-based delegation in addition to identity-based delegation which the current caGrid 1.X code base
supports.
The service should provide a Web Service interface (SOAP or REST).
The service should provide auditing and logging for all interactions.
The service should provide full client API and management user interface.

Considerations include:

Access Control Service
Authorization Service
Auditing Service
Identity Resolution and Federation (provide trust across identity providers)

Workflow

The goal of the Workflow infrastructure in caGrid 2.0 is to enable the end users to build semantic workflows.

Definition of Workflow, Orchestration and Choreography

The word "workflow" is used throughout this document to mean "orchestration" or "choreography." In building composite services from atomic
services, there is a differentiation between orchestration and choreography. In orchestrations, a central controller process controls and
co-ordinates all the services involved in the process. In orchestrations, the services composed need not have any awareness of being coordinated
into a composite service. The central controlling process therefore needs to know things such as how the services are called, the flow, and the
types of transformations that must take place.

Choreography has no central controller process; therefore all the participating services must handle things such as the flow, how are calls made,

and the transformations between services. For more information refer to Ways of combining Web Services. Orchestration vs Choreography (on
 and by Jeff Davis, pages 16-22 and other chapters.the Geek Explains blog) Open Source SOA

Current and Investigated Approaches to Workflow

Currently in caBIG® we can create workflows using Taverna, which uses the Simple Conceptual Unified Flow Language (Scufl) language. Refer
to the and).Arch Workspace original analysis and recommendations ICR Workspace Workflow Working group demo files

However issues remain, including having to create shim services to transform the output message of a service to be a valid input of another
service in the workflow; not having enough services; services exposing data sets that are not semantically; and syntactically aligned and service
stability issues.

The Cross-cutting Workspaces have investigated other technologies recently for semantic workflows, including Workflow INstance Generation
and Selection (WINGS) (refer to . Refer to for additionalSAIF-Effects on Workflow SAIF Workflow - Behavioral Framework and caBIG Workflows
recent thinking concerning workflows in the Service-Aware Interoperability Framework (SAIF).

Considerations in Creating Tools to Enable Workflow

The following are some of the considerations in creating tools that would enable end users to create, run, discover, and publish workflows.

Service Discovery: Users should be able to discover services by searching a service registry. Service discovery tools should also be able
to query a service registry and provide information regarding the security policies on access to the service and whether the user is
authorized to access the service. Good examples for service or capability registry are and the Globus project'sBioCatalogue from myGrid
Integrated Information Services. These tools can be adapted to suit the requirements of the caGrid 2.0 platform.
Service Advertisement: Services and data sets that are exchanged in the service should be annotated with sufficient metadata to enable
users and workflow tools to discover services based on the annotated, standard data sets and also based on the semantic behavior
artifacts of a service. Additional service metadata may include service versions.
Workflow creation: Graphical user interface tools are needed for end users that will enable users to discover and connect various
services in the form of a workflow. Some of tools that can be used for this are the Taverna Workbench from myGrid, which also works
well with BioCatalogue, and Workflow INstance Generation and Selection (WINGS) from Information Sciences Institute (ISI). Workflow
may also leverage available high throughput data access and computation resources where possible.
Security: Workflow tools should also make it easy to pass user identity from one service to another securely.
Workflow publishing and discovery: Tools are needed to publish, discover, and rank workflows created by other users in the community.
Workflow monitoring: monitoring should include workflow status notification, audit logging, and where appropriate, provenance tracking of
the workflow products.
Semantic Workflows: Tools are needed to annotate services with appropriate metadata that would lend itself for auto-generation and for
validation of workflows. Tools like Taverna and WINGS can be adapted to provide this functionality. Workflow creation may need to
perform service interface mediation and data mediation based on metadata of the participating service and information model of the data.

Globally Unique Identifiers

The global unique identifier service performs two functions: (1) generation of a globally unique and permanent identifier and association of the
identifier to metadata associated with data, and (2) resolving an identifier into metadata suitable for retrieving the associated data.

This is a central functionality that is used for linking between different data instances and data sets and for facilitating federated query. It may also
be used in data access authorization. In caGrid 2.0, this functionality is a central capability for the grid and the platform instances.

Federated Query Processing

caGrid 1.x now supports a Federated Query Process (FQP). This is a valuable functionality that must be retained in caGrid 2.0. However, it is
recognized that the FQP in caGrid 2.0 should probably be built as a specialized workflow. Specific considerations include service and data
discovery. Data access mechanisms include the need for standardized query language and access methods, and mediation to transform the data
into the target format and semantics.

Some of the prototyping activity of the caGrid 2.0 and Semantic Infrastructure 2.0 teams will test some capabilities and technologies described
above. These activities are described in more detail in section .10.3 - Next Steps - Risk Mitigation

Tools

Service Development Integrated Development Environment (IDE)

The IDE will facilitate development of caGrid 2.0-based services. The IDE should provide the following capabilities:

Integrate with the Semantic Infrastructure 2.0 Enterprise Conformance and Compliance Framework (ECCF) specification registry to allow
easy creation of services from existing ECCF specifications.
Facilitate generation of new service specifications including static and behavioral information models, and support the registration of new
service specifications.
Through the platform registry, discover existing platform capabilities and specifications, for integration in the service business logic.
Through service discovery mechanisms identify existing service specifications, implementation artifacts, and deployments for integration
in the service business logic.
Provide dynamic client code generation capability when reusing existing service specifications or service instances.
Support definition or reuse of relevant policies, including security policies, that are global for all instances of the service implementation.

http://geekexplains.blogspot.com/2008/07/ways-of-combining-web-services.html
http://geekexplains.blogspot.com/2008/07/ways-of-combining-web-services.html
http://gforge.nci.nih.gov/docman/view.php/36/33/workflow_recomendation.doc
http://gforge.nci.nih.gov/docman/index.php?group_id=332&selected_doc_group_id=4437&language_id=1
https://wiki.nci.nih.gov/display/VCDE/SAIF-Effects+on+Workflow
https://wiki.nci.nih.gov/display/VCDE/SAIF+Workflow+-+Behavioral+Framework+and+caBIG+Workflows
http://www.biocatalogue.org/

Generate out-of-the-box, minimal service capabilities and non-functional logic, such as security, to enable the developer to focus on the
implementation of business logic.
Connect to open source and open access artifacts repositories for publication and reuse.
Automatically generate simple, minimal user interfaces for accessing the service data content or invoking service capabilities. The user
interface may be native or web-based applications such as portlets.

Service Configuration and Administration Tools

Tools are needed to support the configuration, deployment, and maintenance of a service. The following capabilities should be provided.

A service configuration tool to provide a set of functionalities for a service administrator to configure the parameters for a service, such as
database parameters, service policies, security services the service uses, and service metadata. These parameters are configured prior
to deployment.
A service deployment tool to provide a set of functionalities for a service administrator to deploy the service into a grid platform instance,
enforce registration of the metadata, and automate the system configuration to support the service.
A service maintenance tool to allow a service administrator to monitor the health of the service and manage the availability of the service.
A service monitoring tool to allow a service administrator to monitor the performance and usage of the service so the administrator can
reallocate resources to respond to need.

Security Administration Tools

Security services will require effective user interfaces to support administrative activities including the following:

Administration of user accounts, including the functions create, update, retrieve, and revoke, or configure the authentication service with
specific local identity provider implementation, or both.
Authoring and management of authorization policies, including the functions create, update, retrieve, and revoke policies. The tool should
support discovery of and reference to existing policies, as well as discovery of relevant policy decision information.
Management of delegated credentials and rights including revocation of delegation.
Management of the trust relationship between services in the ecosystem.
Support for display of the audit logs, tracking significant events including failed authentication or authorization attempts, and mining for
security policy violations and security breaches.

Site Administration Tools

Site administration tools manage site-wide parameters, properties, and data. A site may encompass a single platform installation, a virtual
organization, or the entire grid. The following capabilities should be provided:

A site-wide policy management tool to manage site-specific policies and references to external policies. Policies include but are not
limited to security and service level agreements. The tool should perform checks on policy consistency if possible, including those from
member sites of a virtual organization (VO). The policies at this level affect some or all service instances at the site.
Site-wide policy conformance testing, leveraging testing and monitoring tools.
A service metadata registry management tool to view and manage the central metadata registry.
A monitoring tool to assess the health and performance of all services deployed at a site.
Site member management, including life cycle, organizational membership agreement, and policies defined at the member level.

Workflow Tools

Application developers, service developers, and end users may wish to create orchestration or choreography of services in implementing a set of
business logic. The following tools facilitate the authoring and execution of the workflow.

A workflow authoring tool allows discovery and composition of services into workflow. It should also allow the publication, discovery, and
management of the composed workflow description.
A workflow execution tool supports the reservation of resources, invocation of services, and monitoring, management, and reporting of
workflow.
Security and policy tools must be leveraged to establish, enforce, or satisfy service-specific and workflow-global security constraints, or to
do all of these things.

The following capabilities are needed:

A semantic workflow composition capability to allow an entity to computationally compose a workflow based on static and behavioral
semantics of the service metadata.
Support for automated generation of a composite grid service from workflow definition.
Support for utilization of high performance computing resources as part or all of the workflow execution, while enforcing policy compliance
on the high performance computing (HPC) resources.

Testing and Monitoring Tools

Specification design and implementation of conformance and compliance testing is largely defined by the Service-Aware Interoperability
Framework Implementation Guide (SAIF IG). caGrid 2.0 should integrate and leverage the tools used. The tools specified here focus on runtime
platform and instance monitoring and testing.

A tool should periodically test conformance of service endpoints to known specifications.
A tool should periodically test compliance and conformances of services with defined policies.

A tool should periodically test the capabilities of the services, as configured and governed by policy, against known Enterprise
Conformance and Compliance Framework (ECCF) specifications.

Portal Technologies

Considerations for portal technologies include:

Lower the barrier to entry for end users to interact with caGrid 2.0.
In spirit of making easy things easy, caGrid 2.0 Portal would provide end users the means to discover, interact and get value from caGrid
2.0 infrastructure.
Provide a mechanism to interact with caGrid 2.0 services without downloading and installing complicated software.
caGrid 2.0 portal should be well-integrated with other components of the caGrid 2.0 architecture including but not limited to security
framework and workflows.

Project Implementation

The list in this section provides a collection of components, projects, and services which need to be developed for caGrid 2.0.

Some of these features or capabilities are represented in varying degrees of completeness in the existing caGrid 1.x code base. These provide a
reasonable starting point for future development.

Performance and quality requirements of the platform, tooling, and core services are to be determined and specified during the project execution
period jointly between CBIIT and the development team, because these requirements are mutable, and quantification of these requirements
depends on the context. A non-exhaustive list of performance and quality requirements is provided in section .5 - caGrid 2.0 Requirements

However, the underlying platform architecture (as described in section has both conceptual and technology differences6 - caGrid 2.0 Architecture
from the architecture of caGrid 1.x. Therefore, regardless of the appropriateness or completeness of the current capabilities, certain development
tasks are needed to migrate caGrid 1.x services to caGrid 2. The following summarizes these projects.

The caGrid 2 architecture leverages a bus which separates the service endpoint protocol and binding from the underlying service
implementation, such that it can more readily be reused for other protocols and bindings. Existing services must be decoupled in this way
by creating separate components for the service interface, and the current implementation. This can be done via OSGI (formerly Open
Services Gateway initiative) methods as recommended.
Any core services which are expected to be universally used by most application and service developers likely need to support a
Representational State Transfer (REST) interface in addition to the current Simple Object Access Protocol (SOAP) web service.
Any core services which are expected to be universally used by most application and service developers likely need to support additional
authentication mechanisms as described in section .7.3 - Authentication
Some core services provide custom mechanisms for auditing and authorization. Some do neither and it has not been required. If these
custom mechanisms are provided, they should be migrated to the bus-supported capability model described in caGrid 2.0.
The services need to be described via appropriate metadata and Enterprise Conformance and Compliance Framework (ECCF) artifacts
published in the Semantic Infrastructure registry. This metadata needs to be made available and referenced appropriately in the service
runtime (the caGrid 2.0 equivalent of caGrid 1.x ServiceMetadata). The services need to support the new mechanism for registration and
discovery.

10.5 - caGrid 1.x Legacy Compatibility

10.5 - caGrid 1.x Legacy Compatibility

February 23, 2011 Working Draft

Note
The semantics and information model and orchestration approach are not currently addressed.

This section includes the following:

Spectrum of Compatibility
Compatibility Approaches
Compatibility Levels
Compatibility Scope
Path Forward

Spectrum of Compatibility

A primary goal of caGrid 2.0 is to ensure a path forward for the existing caGrid 1.x user community. There are two broad categories of
approaches: 1) software migration and 2) software compatibility. In addition, for each of these two approaches, various combinations produce a
spectrum of compatibility.

1.
2.

Compatibility Approaches

caGrid 1.x migration is an approach that involves defining the necessary process to move applications from caGrid 1.x services and application
programming interfaces (APIs) to equivalent caGrid 2.x services and APIs. This approach requires identifying one or more migration paths for
identified service invocation patterns and common APIs leveraged by existing applications. The goal of this approach is to ensure there is a
well-defined process to modify and as needed, refactor, existing caGrid 1.x-based applications and business logic to use caGrid 2.0.

caGrid 1.x software compatibility is an approach that involves ensuring various degrees of forward and backward compatibility.

Backward compatibility is concerned with ensuring that new caGrid 2.0 services are at minimum functionally equivalent to older APIs and
services, and ideally are drop-in replacements. Such replacements are message- and protocol- compatible and can be seamlessly leveraged by
existing caGrid 1.x-based applications and community-contributed services.

Forward compatibility is concerned with ensuring that caGrid 1.x services can understand and process caGrid 2.0 client invocations.

A third option is cross compatibility, defined as a new version of caGrid 1.x adding compatibility with caGrid 2.0.

Compatibility Levels

There are at least two levels of compatibility:

APIs and single-service compatibility
Service orchestration compatibility

APIs and single-service compatibility are defined as equivalent APIs between caGrid 1.x and 2.0, and the ability to invoke individual caGrid 1.x
services, accounting for differences in message format, protocol mediation, and security requirements, including but notlimited to tokens and
authentication process.

Service orchestration compatibility involves caGrid 1.x applications that leverage multiple services. Thus these applications assume specific
service orchestration patterns. Two examples from caGrid 1.x are:

Index service registration, which includes a two-step process of 1) advertising service existence and 2) an index service aggregating
service metadata
Federated query, which includes a two-step process of 1) sending a Distributed caGrid Query Language (DCQL) query to the FQP
service and 2) FQP invoking a query against multiple data services and returning results

Both levels of compatibility are in scope for caGrid 2.0.

Compatibility Scope

By combining compatibility levels and approaches, caGrid 2.0 expects to fall somewhere within the spectrum of no compatibility to full
compatibility. No compatibility is defined as caGrid 1.x and 2.0 being realized as completely independent platforms and deployments with no
services existing on both grids. Full compatibility ensures 1) that all existing caGrid 1.x-based applications seamlessly use caGrid 2.0 services
and APIs via drop-in replacements and 2) that all caGrid 1.x community services can be deployed in their existing form to the new platform.

Path Forward

An open question is whether or not functional equivalence between caGrid 1.x and 2.0 can be achieved. Future prototyping and development will
elucidate the notion of equivalence between caGrid 1.x and 2.0 components and services and pave the way to determine a feasible scope of
compatibility.

Future work will also include specifying some form of end-of-life and sun-setting for caGrid 1.x. The ideal approach is to leverage the bus
architecture to expose both caGrid 1.x style service endpoints, and caGrid 2.x endpoints to the grid, which perform the necessary protocol and
message translations to expose a common business logic implementation of the service. In this way, the caGrid 1.x service endpoint becomes a
facade pattern exposing access to the new implementation. This may or may not be possible for all services depending on the nature of the
features they leverage, and the implied sequence of operations they require, which may or may not exist in the caGrid 2.x architecture.

10.6 - Pre-caGrid 2.0 Interim Development

10.6 - Pre-caGrid 2.0 Interim Development

February 23, 2011 Working Draft

This section includes the following:

The need for an Interim Development Plan
Recommendations

Application Development
Service Development

1.
2.
3.

Java-based Framework
Framework-Specific Features
Authentication

Continued Use of caGrid 1.x
Summary

The need for an Interim Development Plan

A number of projects currently rely on caGrid 1.x, and numerous new CBIIT development projects will begin before a realistic release date of
caGrid 2.0 can be expected. Therefore, an interim plan or recommendation for affected development teams is needed which minimizes the effort
required to migrate to caGrid 2.0 when it becomes available, but allows those teams to proceed on their own time lines prior to that time.

There are a few options possible for such teams:

Continue to leverage caGrid 1.x until such time as caGrid 2.0 and a migration plan are developed.
Develop on a technology stack independent of caGrid considerations.
Develop on a technology stack expected to be complimentary and consistent with the envisioned caGrid 2.0 technology stack.

caGrid 1.x currently serves a number of diverse customers from web and thick client applications, custom analytic services, and fully
auto-generated data services. The potential caGrid 2 development customers are even more diverse. Therefore, a "one size fits all" approach to
migration and interim technology is not appropriate.

Recommendations

Application Development

For project teams planning to develop applications which consume of current or planned services, it is recommended that an abstraction layer be
introduced between the application's business logic and the grid service client.

This abstraction layer may take numerous forms, depending on the application's environment, but generally would follow the adapter, proxy, or
facade pattern(s). For example, a simple interface representing a target service's operations, populated through dependency injection or a
configuration file, may suffice for simple applications.

The interface should isolate the targeted service's operations from any implementation or technology-specific details (such as GlobusCredential
and ServiceMetadata). Note in some cases, caGrid-provided client APIs are already sufficiently technology-neutral.

Alternatively, for applications which already exist in a bus or message-driven environment, the abstraction layer could be implemented as a local
service which responds to local requests and adapts them to invocations of the remote services appropriately.

The intention of this abstraction layer is to isolate all "caGrid-specific" code below the abstraction layer, such that migrating the full application to
caGrid becomes a matter of migrating the "implementation" of the abstraction layer, and does not affect any business logic.

In any event, the abstraction layer should focus purely on the business logic and domain objects of the service. As caGrid 2.0 is intended to be
much more technology-agnostic, this abstraction layer may later, after migration to caGrid 2.0, be refactored to be only the direct service interface
of the caGrid 2 services used. Alternatively, the abstraction layer could continue to exist as a lightweight abstraction layer.

Service Development

As noted above, a single mitigation for all services is not feasible given the varying requirements and complexities of each project. However,
some guiding principles can be applied to determine a specific course of action for new development efforts.

For , where there are no existing depending clients, the Service-Aware Interoperability Framework Implementationgreen field development
Guide naturally leads a development team to a contract-first service design. That is, the information model and service interface should be
designed in a technology-independent model. For caGrid 2.0, the two supported service styles are expected to be RESTful (Representational
State Transfer) services, and Simple Object Access Protocol (SOAP) and Web Service Definition Language (WSDL)-based web services. The
platform-specific model for a project planning to migrate to caGrid 2.0 should be specified in a manner appropriate to those end state service
contracts (for example, Web Service Definition Language (WSDL)).

Such a service may ultimately be implemented by a number of technologies and toolkits and is consistent with industry best practices, and so
should introduce no additional developmental burden. These service contracts are toolkit- and programming language-agnostic, but each
implementation of such a contract requires a technology and language choice.

Java-based Framework

For service developers planning to adopt the CBIIT Java-based reference implementation of the platform (as opposed to developing interoperable
services or clients on another platform or language), a Java-based service development framework should be leveraged so the business logic
need not be rewritten or invoked from the Java-based implementation environment caGrid 2.0 will provide.

Additional Information
It will be possible to implement services in a non-Java language in caGrid 2.0, but it will require either a Java or ESB-based
adapter to invoke the other language from the platform, or the adoption of a different platform or framework informed by the
same underlying Enterprise Conformance and Compliance Framework (ECCF) specifications.

The Java community has made significant progress in standardization of web service implementation patterns. As languages like WSDL, Web
Application Description Language (WADL), and XML Schema language (XSD) provide service interface definitions that are portable across
toolkits (above the interface), Java has standardized on approaches to mapping them to Java-based implementations (below the interface) by
way of the languages JAX-WS, JAX-RS, and JAXB respectively. All major Java-based web service frameworks now support those specifications
for implementing web services in Java, and there is a formal toolkit conformance test suite that ensures developers leveraging those
specifications can seamlessly migrate their implementations between conforming platforms. That is, ideally, the developer can develop and test a
service in Metro, and deploy it to Apache CXF.

In practice there are generally some platform-specific utilities, configurations, and tools that are tempting to leverage, making this transition not as
automatic as the ideal scenario. However, these specifications significantly reduce the migration issues that previously plagued the industry, and
all but eliminate the possibility of conceptual-level incompatibility in an implementation approach. The specifications use Java annotations, and
define two development approaches: and .Java-first contract-first

caGrid 2.0 will leverage these standards in its implementation artifacts, and deployment platform, so service development projects should plan to
map their specifications to Java implementations by way of these standards thus greatly reducing the possibility of issues when migrating service
business logic to caGrid 2.0.

Framework-Specific Features

As noted above, there are generally features that are unique to a specific framework and thus outside of the scope of the implementation
standards (JAX-WS, JAX-RS, and JAXB), which require configuration or code that are framework-specific. For example, some supporting service
specifications (such as WS-Trust, WS-Transaction, and WS-Policy) or transport layer configuration options are configured differently in each
framework. These are fine to use and should not create undue transition issues provided care is taken to isolate their use from the service
interface and business logic that will be migrated to caGrid 2.0.

For example, if a framework-specific utility API is needed, it should not be used throughout a implementation of a service, but rather should be
abstracted from the code via common design patterns or interface-based isolation. This may create more development work or slightly more
complex code in some situations, but ensures the implementation is isolated from any transitional changes, such as a new library being used.

A particularly important subset of such libraries are those which may be used for controlling access to the service and its data, namely
authorization libraries. A best practice in service implementation is to attempt to perform all authorization logic prior to the business logic of the
service being invoked. Thus the implementation need not be concerned with authorization logic, and such logic can be reused across
deployments as authorization can be changed independently.

This is traditionally done via an interceptor approach in which the framework is configured to intercept service invocations and pass them through
an authorization and policy framework first. This pattern should be followed as caGrid 2.0 will employ a similar approach, as detailed in section 7.4

. Sometimes it is necessary to interact with the authorization framework within the implementation logic, for example, to filter- Authorization
intermediate results. In these cases, the authorization library should be isolated from the business logic via the patterns discussed above.

Authentication

In order to perform authorization in services which require it, the framework must first provide a means of authenticating the calling user. The way
this is done can vary greatly in industry, but the typical "simple" approach is to use a service-defined user name and password combination. While
this is very simple to implement, it should be avoided as service-defined user names and passwords are not portable to any foreseeable CBIIT
deployment environment.

Invariably the credentials of the user will be issued by some party external to the service. The approach envisioned for authentication in caGrid
2.0 is discussed in section , but this is a complex topic. In order to leverage a short- to medium-term solution that does not7.3 - Authentication
introduce technology issues which may not be supported in future deployments, a safe approach is to leverage X.509 certificates for
authentication purposes. There is significant industry traction (and legacy) for this approach and caGrid 2.0 will support it.

While the issuing authorities for the certificates may change, the service configuration and implementation which uses X.509 certificates should
not. Other approaches can be used as necessary, but may require significant changes in technology or governance when migrated to a caGrid
2.0-based CBIIT deployment. The most straightforward way to leverage X.509 certificates for authentication is to use HTTP Secure (HTTPS)
transport layer security. This will be supported in caGrid 2.0, is an efficient and capable mechanism, and is used extensively in industry.

Continued Use of caGrid 1.x

In contrast to the discussion above, there are several situations in which continued use of caGrid 1.x is the most appropriate recommendation. In
cases where the service development is expected to have significant interactions with the current caGrid 1.x environment in the short term, it may
make sense to develop the service using the existing caGrid 1.x tooling. That is, if the new service will augment an existing caGrid 1.x-based
application, it may require less effort to manually migrate or re-implement the service using caGrid 2.x when it becomes available, than it would to
reproduce the caGrid-expected functionality (such as Web Services Resource Framework (WSRF), service metadata, and index service
registration) in an interim technology stack such as the one specified above.

Another appropriate scenario for continued use of caGrid 1.x is services which require a basic or common data query capability. The caGrid 1.x

1.
2.
3.
4.

infrastructure provides powerful tools and wizards for developing Unified Modeling Language (UML)-based query and ISO 11179 static semantic
metadata with very little if any development necessary.

Finally, many of the caGrid 1.x core services can easily be used as supporting infrastructure for new service development efforts. For example,
Grid Authentication and Authorization with Reliably Distributed Services (GAARDS) could be deployed to facilitate the management of a Public
Key Infrastructure (PKI) environment for new services.

Summary

The following summarizes guidelines based on this section.

Design a service to be a WSDL-based web service or RESTful service.
Use a Java toolkit supporting JAX-WS, JAX-RS, and JAXB to implement the service.
Try to keep the business logic of the service clean of any toolkit-specific extensions or utilities.
Leverage mutual authentication transport layer security (HTTPS using x.509 certificates).

For information about prototyping for the Semantic Infrastructure 2.0 and caGrid 2.0 Roadmaps, refer to CBIIT Roadmaps Inception Phase and
.Prototyping

11 - Governance for caGrid 2.0

11 - Governance for caGrid 2.0

February 23, 2011 Working Draft

This section includes the following:

11.1 Introduction to caGrid 2.0 Governance and Management
11.2 - Enterprise Architecture Governance and Design Time Governance for caGrid 2.0
11.3 - Run-time Policies to be Governed in caGrid 2.0
11.4 - Support for Multiple Service Maturity Levels

11.1 Introduction to caGrid 2.0 Governance and Management

11.1 Introduction to caGrid 2.0 Governance and Management

February 23, 2011 Working Draft

caGrid 2.0 must be governed and managed. Platform and security capabilities and services must be specified and built; technologies must be
defined and chosen; and policies must be formulated and enforced. Community governance of caGrid 2.0 will evolve as caGrid 2.0 is built and
different organizations adopt capabilities within caGrid 2.0. This section does not address governance of caGrid 2.0 in the wider community, but
focuses on governance of caGrid 2.0 as planned, specified and implemented within NCI CBIIT.

In this section, the term "governance" is defined as used by Anne Thomas Manes in a recent article summarizing a forthcoming book by Thomas
Erl on Service-oriented Architecture (SOA) governance. Manes states that "Governance is fundamentally about people and practices." Further,
governance is the organizational system that a jurisdiction (for example, a country, state, or city), or an organization (for example, a corporation,
standards body or open source community), uses to regulate its activities.

https://wiki.nci.nih.gov/x/aQwSAg
https://wiki.nci.nih.gov/x/aQwSAg

Figure 11.1. Governance at the Center of Continuous Interaction Among People, Processes and Technology

In Manes's terms, governance is a "meta-decision system," that is, the means by which a governed organization makes decisions about
.decision-making

Within this context, governance determines who is responsible for making decisions and who has the authority to make them. Governance
establishes boundaries and constraints that influence, guide, and control decisions. Governance also sets consequences for non-compliance with
decisions. In summary, governance establishes the rules that control decision making. In contrast, management determines when to make
decisions, makes them, and ensures decisions are made according to these rules.

Governance provides a systematic means for organizations to make decisions. Within governance, people make decisions. Processes coordinate
decision-making. Compliance is measured through metrics.

Decision-making rules are defined in precepts. Principles define precepts and establish responsibility and authority for precepts. Policies define
specific aspects of precepts and establish constraints on decision-making and consequences for non-compliance.

Guidelines are recommendations and best practices that are not mandatory.

Standards specify the formats, technologies, processes, actions and metrics to be used to implement policies.

This section briefly describes the layers of governance that have an impact on implementation of caGrid 2.0 within NCI CBIIT. Subsequent
sections describe categories and examples of policies that need to be defined and enforced, suggestions as to governance bodies, and
suggestions for processes and tools.

A representation of the layers of governance in the context of NCI CBIIT is shown in Figure 11.2. This figure depicts the conceptual nature of
governance NCI CBIIT, and does not describe all the layers of governance, nor all the interactions among governing layers or bodies.within

At the most overarching (outermost) layer, there are governing bodies that establish the enterprise governance of people, precepts, processes
and metrics of the enterprise as a whole. For information about enterprise governance, and layers of governance in NCI CBIIT, refer to the

).Service-Aware Interoperability Framework Implementation Guide

At deeper levels in the organization, governance prescribes policies, standards, and processes that guide and control day-to-day decision-making
activities. This discussion focuses on some of the most specific (innermost) layers, which have an impact on the governance of the caGrid 2.0
implementation within NCI CBIIT, including the concepts of design time governance and runtime governance.

https://wiki.nci.nih.gov/x/fldyAQ

Figure 11.2. Layers of Governance within NCI CBIIT

Within the overarching enterprise governance layer is the enterprise architecture governance layer. The enterprise architecture governance layer
is concerned with services and infrastructure, including caGrid 2.0.

Within that layer is infrastructure and within that layer, caGrid 2.0 is one part of the infrastructure. Important for defining caGrid 2.0 governance
are the related governance concepts of design time governance and runtime governance. Design time and runtime governance are applicable to
all services in CBIIT, but the infrastructure components, especially caGrid 2.0, are expected to support runtime governance.

Arrows pointing to each successive more specific layer convey the impact that policies from the outer layers of governance have on the inner
layers. That is, policies developed at the inner layers must align with and not contradict those in the outer layers. The arrows pointing from
successively more specific to more overarching layers convey that the inner layers of governance have and impact on and influence the outer
layers. For example, technologies chosen in implementing caGrid 2.0 capabilities may have impact at the outer layers of governing bodies and
policies.

This figure depicts only the conceptual governance structures and relationship within NCI CBIIT. Other organizations may be expected to have
similar governance structures to govern their implementation of caGrid 2.0. In addition, governance of caGrid 2.0 in the community is not yet
addressed. As caGrid 2.0 is planned, specified and implemented at NCI CBIIT and other institutions, an intra-organizational or community based
governance structure may be expected to evolve. For ideas about this kind of evolution, refer to "Service-Oriented Science" by Ian Foster in

, volume 308, May 6, 2005 (pages 814-817).Science

11.2 - Enterprise Architecture Governance and Design Time Governance for
caGrid 2.0

11.2 - Enterprise Architecture Governance and Design Time Governance for caGrid 2.0

February 23, 2011 Working Draft

Service-oriented Architecture (SOA) governance principles invoke a strong enterprise architecture governance (Biske, Todd. SOA Governance:
. Birmingham (UK): Packt Publishing Ltd., 2008 and publications of Thomas Erl listed inthe key to successful SOA adoption in your organization

the). The enterprise architecture governance layer must include policies for the design ofcaGrid 2.0 and Semantic Infrastructure 2.0 - References
services and infrastructure, including caGrid 2.0 capabilities (design time governance).

The policies to be developed and enforced related to design time may be determined by considering questions identified by Todd Biske in SOA
. Areas addressed include defining candidate services, assembling a stakeholder group based on these services, structuring theGovernance

https://wiki.nci.nih.gov/display/CBIITtech/caGrid+2.0+and+Semantic+Infrastructure+2.0+-+References

project to develop these services, funding, re-use, appropriate redundancies, fit with existing services, use of services in business processes, use
of technology and standards, security policies, and testing.

Design time policy questions from the caBIG® community include:

What is the policy for service deployment and hosting?
What are the policies for service level agreements (SLAs) for services hosted by participating institutions?
What are the policies surrounding versioning and upgrades of services?
What are the policies surrounding data sharing?

What is the policy for sharing specific categories of data?
Policies to verify Health Insurance Portability and Accountability Act (HIPAA) compliance for a limited data set?
Policies concerning approval and sharing of that data set over the Grid?

What requirements are placed on institutions when sharing data?
Availability of data (within SLA)?
Requirements to ensure long term availability of data sets?

What are the policies on quality of descriptions of services and data (semantic interoperability)?
What are the policies around prototyping and sharing data sets without semantic annotations for proof-of-concept?
What are the policies for addition of existing community semantic information (vocabularies and data elements) to caBIG®
central repositories?

What are the security policies?
What policy applies to integration of existing institutional accounts into the Grid? For example, what requirements do institutions
have to vet identities of users and what are the requirements and process for integrating accounts into the Grid to allow access
to institutional users?
What is the policy concerning authorization requirements for certain categories of operations, either on core or
community-contributed services?

These design time policy questions are the responsibility of the enterprise architecture governance layer. Some have been described in the NCI
. Some of these policies are being formulated and enforced by theCBIIT Service-Aware Interoperability Framework Implementation Guide

Enterprise Services Specification Team (ESST) and Composite Architecture Teams (CATs).

The team(s) that plan, specify and build the capabilities and services that underlie the caGrid 2.0, such as those described in section 6.3 -
, must adhere to adopted policies.Platform Architecture for caGrid 2.0

11.3 - Run-time Policies to be Governed in caGrid 2.0

11.3 - Run-time Policies to be Governed in caGrid 2.0

February 23, 2011 Working Draft

Runtime governance is concerned with "the correct behavior of service consumers and service providers so that the infrastructure remains
operational and in a healthy state at all times." The policies to be developed and enforced related to runtime may be determined by considering
questions identified by Todd Biske in . Areas addressed include rate of requests, response time, time restrictions on access,SOA Governance
consistency when different technologies are used, configuration and enforcement of security policies, compatibility among versions, logging and
auditing, usage metrics and reports and message structure.

Other types of runtime policy questions from the caBIG® community have included:

What is the policy for notification of service outages?
What is the policy on access to data?
What is the policy concerning authorization requirements for certain categories of operations, either on core or community-contributed
services?
What are the policies concerning grid-wide versus local access control requirements for services and data?

These runtime policies are especially important for infrastructure capabilities and services, and especially for caGrid 2.0. It is anticipated that most
of these policies should be explicit, and therefore enforceable at the service contract level. Within NCI CBIIT, a governance body must be
responsible for assigning people, precepts, processes and metrics for runtime governance. A management body must be assigned the
responsibilities of writing policies, and managing day-to-day conformance to those policies.

11.4 - Support for Multiple Service Maturity Levels

11.4 - Support for Multiple Service Maturity Levels

February 23, 2011 Working Draft

https://wiki.nci.nih.gov/x/fldyAQ
https://wiki.nci.nih.gov/x/fldyAQ

1.

2.

3.

4.

Note
This section is related to the idea of multiple domains of governance, and different levels of complexity of governance.

In a distributed ecosystem such as one described in section , multiple organizations can leverage and6.2 - Distributed Ecosystem for caGrid 2.0
contribute to the service ecosystem.

To ensure sustainability and broad adoption of caGrid 2.0, the creation, encouragement and support of a caGrid community, consisting of the
stakeholders listed in section , is critical. The community members will participate at3 - Stakeholders - caGrid 2.0 and Semantic Infrastructure 2.0
various levels, and contribute services and applications to the caGrid ecosystem.

The ecosystem must be able to support diverse implementations of functionality, as well as different service and application maturity levels and
development methodologies. While CBIIT-funded production service development will adhere to the CBIIT Service-Aware Interoperability
Framework (SAIF) and Enterprise Conformance and Compliance Framework (ECCF) software development process, development efforts by
other organizations are not required to follow the CBIIT SAIF and ECCF practices. Production services can be certified after going through formal,
CBIIT driven conformance and compliance testing.

Four service development scenarios at two extreme ends of the spectrum are outline below:

CBIIT funds the development of a certified patient data service. The business analysis team determines the need for and scopes the
service. The development team then specifies the service at the Computation-independent Model (CIM), Platform-independent Model
(PIM), and Platform-specific Model (PSM) levels. The development team creates the service implementation based on the PSM
specification. The deployment and test team then deploy the service implementation to a platform instance for the service to join the
ecosystem.
CBIIT funds the development of a proof of concept workflow service that has the capability to semantically discover and computationally
construct a service-based workflow. The workflow service follows the ECCF process but does not guarantee correctness of operation,
security or performance as a prototype.
Emory University created a service that manages annotations for images. The service is created using caBIG® and Emory technologies
but does not follow specification and documentation practices of CBIIT. The service is used for internal projects initially but has gained
traction in the external community and interest from CBIIT in transforming it into a CBIIT enterprise service.
The Ohio State University has developed an image analysis algorithm that is undergoing validation. The developers are interested in
utilizing image data from caBIG® and orchestration capabilities of caGrid 2.0. The developers have created a service that invokes the
image analysis algorithm, which, as the algorithm changes, undergoes frequent updates.

The scenarios illustrate a spectrum of services ranging from proof of concept to production level in terms of software stability and performance. In
addition, the software development process produces different sets of artifacts ranging from code-as-documentation to computable semantics
based specification.

It is important to note that a service may be mature in fulfilling its functional requirements but may not be mature in its documentation and
specifications, and vice versa.

Support for different levels of maturity in software implementation and specification artifacts by the platform and in the ecosystem requires support
from both governance and caGrid 2.0 implementation. The conformance check, computability of semantic interoperability of services, and other
aspects may not be available for a prototype service and therefore may not be leveraged in service composition and workflow authoring.

The CBIIT service development governance process also needs to allow for and support CBIIT-funded development of services at varying
maturity levels, including prototypes that may not carry the same level of conformance and compliance as a production or certified service.

12 - caGrid 2.0 Roadmap Glossary and References

12 - caGrid 2.0 Roadmap Glossary and References

February 23, 2011 Working Draft

The on the CBIIT SAIF Wiki provides lists of acronyms and definitions of keyGlossary for CBIIT SAIF, caGrid 2.0 and Semantic Infrastructure 2.0
terms.

A list of is provided.caGrid 2.0 and Semantic Infrastructure 2.0 - References

https://wiki.nci.nih.gov/display/SAIF/Glossary+for+CBIIT+SAIF%2C+caGrid+2.0+and+Semantic+Infrastructure+2.0
https://wiki.nci.nih.gov/display/CBIITtech/caGrid+2.0+and+Semantic+Infrastructure+2.0+-+References

	caGrid 2.0 Roadmap
	1 - Invitation to Review the Roadmaps - caGrid 2.0 and Semantic Infrastructure 2.0
	2 - Introduction to the Roadmaps - caGrid 2.0 and Semantic Infrastructure 2.0
	3 - Stakeholders - caGrid 2.0 and Semantic Infrastructure 2.0
	4 - caGrid 2.0 Use Cases
	4.1 - Translational Medicine, Research and Personalized Medicine for caGrid 2.0
	4.2 - Life Sciences for caGrid 2.0
	4.3 - Clinical Trials for caGrid 2.0
	4.4 - Electronic Health Records for caGrid 2.0

	5 - caGrid 2.0 Requirements
	6 - caGrid 2.0 Architecture
	6.1 - Overview of caGrid 2.0 Architecture
	6.2 - Distributed Ecosystem for caGrid 2.0
	6.3 - Intra-Institutional Use for caGrid 2.0
	6.4 - Platform Architecture for caGrid 2.0
	6.5 - Platform Implementation for caGrid 2.0
	6.6 - CBIIT Adopt or Build Tools Recommendations

	7 - Security for caGrid 2.0
	7.1 - Overview of Security for caGrid 2.0
	7.2 - Communication Security
	7.3 - Authentication
	7.4 - Authorization
	7.5 - Delegation
	7.6 - Trust
	7.7 - Audit
	7.8 - Privacy

	8 - Programming Model
	9 - Tool Categories
	10 - Gap Analysis - caGrid 1.x versus caGrid 2.0
	10.1 - Introduction to Gap Analysis - caGrid 1.x versus caGrid 2.0
	10.2 - Gap Analysis - caGrid 1.x vs. 2.0 Fulfillment of Requirements
	10.3 - Next Steps - Risk Mitigation
	10.4 - CBIIT Project Recommendations
	10.5 - caGrid 1.x Legacy Compatibility
	10.6 - Pre-caGrid 2.0 Interim Development

	11 - Governance for caGrid 2.0
	11.1 Introduction to caGrid 2.0 Governance and Management
	11.2 - Enterprise Architecture Governance and Design Time Governance for caGrid 2.0
	11.3 - Run-time Policies to be Governed in caGrid 2.0
	11.4 - Support for Multiple Service Maturity Levels

	12 - caGrid 2.0 Roadmap Glossary and References

